Skip to main content
Log in

Formation of CdxPb1−xS/Cd1-δS thin-film two-phase compositions by chemical bath deposition: composition, structure, and optical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The possibility of forming thin-film two-phase compositions CdxPb1-xS/Cd1−δS using chemical bath deposition from aqueous media with adding various cadmium salts has been demonstrated. The crystal structure, chemical composition, morphology, and the band gap were studied by the X-ray diffraction, scanning electron microscopy, elemental analysis, Auger and Raman spectroscopy, and diffuse reflectance measurements. The formation of a CdxPb1−xS/Cd1−δS substitutional solid solution phase in well-faceted crystallites on the substrate of an X-ray amorphous CdS phase was experimentally shown. The observed difference in the composition of the films deposited with adding different cadmium salts is the result of the effect of the nucleophilicity of the anionic component of these salts on the kinetics of thiourea decomposition. The results demonstrate the possibility of forming thin-film two-phase compositions or heterostructures on the base of cadmium and lead sulfides in one technological stage using chemical bath deposition, which can be important for the creation of solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the article.

References

  1. N.K. Abrikosov, L.E. Shelimova, Semiconductor Materials Based on IV–VI Compounds (Nauka, Moscow, 1975). (in Russian)

    Google Scholar 

  2. V.I. Kaidanov, Y.I. Ravich, Sov. Phys. Usp. 28, 31 (1985). https://doi.org/10.1070/PU1985v028n01ABEH003632

    Article  Google Scholar 

  3. S. Kumar, B. Bhattacharya, Ind. J. Pure Appl. Phys. 43, 609 (2005)

    CAS  Google Scholar 

  4. D.A. Caselli, C.Z. Ning, Opt. Express. 19, A686 (2011). https://doi.org/10.1364/OE.19.00A686

    Article  CAS  Google Scholar 

  5. Y.B. Castillo-Sanchez, L.A. Gonzalez, Mater. Sci. Semicond. Process. 121, 105405 (2021). https://doi.org/10.1016/j.mssp.2020.105405

    Article  CAS  Google Scholar 

  6. T.O. Boykin II., N. Dhakal, J. Boroumand, F. Javier Gonzalez, I.O. Oladeji, P. Figueiredo, S. Neushul, R.E. Peale, MRS Adv. 2, 2013 (2020). https://doi.org/10.1557/adv.2020.324

    Article  CAS  Google Scholar 

  7. M.K.A. Mohammed, Plasmonics 15, 1989 (2020). https://doi.org/10.1007/s11468-020-01224-5

    Article  CAS  Google Scholar 

  8. E.M. Nasir, I.S. Naji, Aust. J. Basic Appl. Sci. 9, 364 (2015)

    Google Scholar 

  9. M. Kamruzzaman, R. Dutta, J. Podder, Semiconductors 46, 957 (2012). https://doi.org/10.1134/S1063782612070111

    Article  CAS  Google Scholar 

  10. L.N. Maskaeva, N.A. Forostyanaya, V.F. Markov, V.I. Voronin, Russ. J. Inorg. Chem. 60, 552 (2015). https://doi.org/10.1134/S0036023615050150

    Article  CAS  Google Scholar 

  11. M. Gugliemi, A. Martucci, J. Fick, G. Vitrant, J. Sol-Gel Sci. Technol. 11, 229 (1997). https://doi.org/10.1023/A:1008650027769

    Article  Google Scholar 

  12. R.D. Muhamediarov, G.A. Kitaev, V.M. Markova, V.I. Stuk, Inorg. Mater. 17, 1739 (1981). ([in Russian])

    Google Scholar 

  13. G.A. Kitaev, V.F. Markov, L.N. Maskaeva, L.E. Vasyunina, I.V. Shilova, Inorg. Mater. 26, 202 (1990)

    Google Scholar 

  14. L.N. Maskaeva, V.F. Markov, A.I. Gusev, Russ. J. Inorg. Chem. 49, 1065 (2004)

    CAS  Google Scholar 

  15. I.V. Vaganova, L.N. Maskaeva, V.F. Markov, V.I. Voronin, V.G. Bamburov, Nanosystems 9, 811 (2018). https://doi.org/10.17586/2220-8054-2018-9-6-811-822

    Article  CAS  Google Scholar 

  16. E. Pentia, V. Draghici, G. Sarau, B. Mereu, L. Pintilie, F. Sava, M. Popescu, J. Electrochem. Soc. 151, G729 (2004). https://doi.org/10.1149/1.1800673

    Article  CAS  Google Scholar 

  17. E. Rabinovich, E. Wachtel, G. Hodes, Thin Solid Films 517, 737 (2008). https://doi.org/10.1016/j.tsf.2008.08.162

    Article  CAS  Google Scholar 

  18. L.N. Maskaeva, A.V. Pozdin, V.F. Markov, V.I. Voronin, Semiconductors 54, 1567 (2020). https://doi.org/10.1134/S1063782620120209

    Article  CAS  Google Scholar 

  19. A.K.E. Suryavanshi, R.B. Dhake, A.M. Patil, M.R. Sonawane, Optik 218, 165008 (2020). https://doi.org/10.1016/j.ijleo.2020.165008

    Article  CAS  Google Scholar 

  20. G.B. Reddy, D.K. Pandya, K.L. Chopra, Sol. Energy Mater. 15, 383 (1987). https://doi.org/10.1016/0165-1633(87)90058-X

    Article  CAS  Google Scholar 

  21. S.R. Deo, A.K. Singh, L. Deshmukh, L.J. Paliwal, R.S. Singh, Optik 126, 2311 (2015). https://doi.org/10.1016/j.ijleo.2015.05.130

    Article  CAS  Google Scholar 

  22. M.A. Barote, S.S. Kamble, A.A. Yadav, R.V. Suryavnshi, L.P. Deshmukh, E.U. Masumdar, Mater. Lett. 78, 113 (2012). https://doi.org/10.1016/j.matlet.2012.03.018

    Article  CAS  Google Scholar 

  23. L.N. Maskaeva, V.F. Markov, A.I. Gusev, Dokl. Phys. Chem. 390, 147 (2003). https://doi.org/10.1023/A:1024446709437

    Article  CAS  Google Scholar 

  24. H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969). https://doi.org/10.1107/S0021889869006558

    Article  CAS  Google Scholar 

  25. D.L. Bush, J.E. Post, Rev. Mineral. 20, 369 (1990). https://doi.org/10.1180/claymin.1990.025.4.12

    Article  Google Scholar 

  26. J. Rodriges-Carvajal, Phys. B 192, 55 (1993). https://doi.org/10.1016/0921-4526(93)90108-I

    Article  Google Scholar 

  27. G.K. Williamson, W.H. Hall, Acta. Metall. 1, 22 (1953). https://doi.org/10.1016/0001-6160(53)90006-6

    Article  CAS  Google Scholar 

  28. P. Kubelka, F. Munk, Techn. Physik. 12, 593 (1931) [in German]. See also English translation by S. Westin (An article on optics of paint layers, http://www.graphics.cornell.edu/~westin/pubs/kubelka.pdf)

  29. E. Cruceanu, D. Niculescu, Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences 261, 935 (1965)

    CAS  Google Scholar 

  30. H. Sowa, Solid State Sci. 7, 73 (2005). https://doi.org/10.1016/j.solidstatesciences.2004.10.011

    Article  CAS  Google Scholar 

  31. S. Ruben, Handbook of Elements (Open Court Publishing, La Salle, 1985)

    Google Scholar 

  32. L. Vegard, Z. Phys. 5, 17 (1921). https://doi.org/10.1007/BF01349680

    Article  CAS  Google Scholar 

  33. T. Kobayashi, K. Susa, S. Taniguchi, J. Phys. Chem. Solids 40, 781 (1979). https://doi.org/10.1016/0022-3697(79)90160-4

    Article  CAS  Google Scholar 

  34. J.A. Corll, J. Appl. Phys. 35, 3032 (1964). https://doi.org/10.1063/1.1713151

    Article  CAS  Google Scholar 

  35. C.J.M. Rooymans, Phys. Lett. 4, 186 (1963). https://doi.org/10.1016/0031-9163(63)90356-1

    Article  CAS  Google Scholar 

  36. K. Susa, T. Kobayashi, S. Taniguchi, J. Solid State Chem. 33, 197 (1980). https://doi.org/10.1016/0022-4596(80)90120-6

    Article  CAS  Google Scholar 

  37. V.F. Markov, L.N. Maskaeva, Russ. Chem. Bull. 63, 1523 (2014). https://doi.org/10.1007/s11172-014-0630-7

    Article  CAS  Google Scholar 

  38. T. Ungar, I. Dragomir, A. Revesz, A. Borbely, J. Appl. Crystallogr. 32, 992 (1999). https://doi.org/10.1107/S0021889899009334

    Article  CAS  Google Scholar 

  39. T. Ungar, A. Borbely, Appl. Phys. Lett. 69, 3173 (1996). https://doi.org/10.1063/1.117951

    Article  CAS  Google Scholar 

  40. A.V. Volkov, V.N. Vigdorovich, D.P. Kolesnikov, Phys. Technol. Semicond. 21, 90 (1987). (in Russian)

    CAS  Google Scholar 

  41. N.C. Sharma, D.K. Pandya, H.K. Sehgal, K.L. Chopra, Thin Solid Films 42, 383 (1977). https://doi.org/10.1016/0040-6090(77)90373-X

    Article  CAS  Google Scholar 

  42. L.E. Davis, N.C. MacDonald, P.W. Palmberg, G.E. Riach, R.E. Weber, Handbook of Auger Electron Spectroscopy (Physical Electronics Division PerkinElmer Corporation, Eden Prairie, 1976)

    Google Scholar 

  43. J. Morimoto, Jpn. J. Appl. Phys. 19, L296 (1980). https://doi.org/10.1143/JJAP.19.L296

    Article  CAS  Google Scholar 

  44. J.-H. Chen, C.-G. Chao, J.-C. Ou, T.-F. Liu, Surf. Sci. 601, 5142 (2007). https://doi.org/10.1016/j.susc.2007.04.228

    Article  CAS  Google Scholar 

  45. M. Hangyo, S. Nakashima, Y. Hamada, T. Nishio, Y. Ohno, Phys. Rev. B 48, 11291 (1993). https://doi.org/10.1103/PhysRevB.48.11291

    Article  CAS  Google Scholar 

  46. M. Kul, Anadolu Univ. J. Sci. Technol. B 7, 46–58 (2019). https://doi.org/10.20290/aubtdb.465445

    Article  Google Scholar 

  47. S.V. Ovsyannikov, V.V. Shchennikov, A. Cantarero, A. Cros, A.N. Titov, J. Mater. Sci. Eng. 462, 422 (2007). https://doi.org/10.1016/j.msea.2006.05.175

    Article  CAS  Google Scholar 

  48. H. Cao, G. Wang, S. Zhang, X. Zhang, Nanotechnology 17, 3280 (2006). https://doi.org/10.1088/0957-4484/17/13/034

    Article  CAS  Google Scholar 

  49. R. Sherwin, R.J.H. Clark, R. Lauck, M. Cardona, Solid State Commun. 134, 565 (2005). https://doi.org/10.1016/j.ssc.2005.02.026

    Article  CAS  Google Scholar 

  50. G.D. Smith, S. Firth, R.J.H. Clark, M. Cardona, J. Appl. Phys. 92, 4375 (2002). https://doi.org/10.1063/1.1505670

    Article  CAS  Google Scholar 

  51. T. Tohidi, K. Jamshidi-Ghaleh, A. Namdar, R. Abdi-Ghaleh, Mater. Sci. Semicond. Process. 25, 197 (2014). https://doi.org/10.1016/j.mssp.2013.11.028

    Article  CAS  Google Scholar 

  52. T.D. Krauss, F.W. Wise, D.B. Tanner, Phys. Rev. Lett. 76, 1376 (1996). https://doi.org/10.1103/PhysRevLett.76.1376

    Article  CAS  Google Scholar 

  53. L.N. Maskaeva, V.F. Markov, V.I. Voronin, A.I. Gusev, Thin Solid Films 461, 325 (2003). https://doi.org/10.1016/j.tsf.2004.02.035

    Article  CAS  Google Scholar 

  54. A.A. Milekhin, L. Sveshnikova, T. Duda, N. Surovtsev, S. Adichtchev, D.R.T. Zahn, Chin. J. Phys. 49, 63–70 (2011)

    CAS  Google Scholar 

  55. A.I. Belogorokhov, I.A. Belogorokhov, R.P. Miranda, M.I. Vasilevskii, S.A. Gavrilov, JETP 104, 111 (2007). https://doi.org/10.1134/S1063776107010128

    Article  CAS  Google Scholar 

  56. A.G. Rolo, M.I. Vasilevskiy, J. Raman Spectrosc. 38, 618 (2007). https://doi.org/10.1002/jrs.1746

    Article  CAS  Google Scholar 

  57. M.I. Vasilevskiy, Phys. Rev. B. 66, 195326 (2002). https://doi.org/10.1103/PhysRevB.66.195326

    Article  CAS  Google Scholar 

  58. J.O. Oladeji, L. Chow, J.R. Liu, W.K. Chu, A.N.P. Bustamante, C. Fredricksen, A.F. Schulte, Thin Solid Films 359, 154 (2000). https://doi.org/10.1016/S0040-6090(99)00747-6

    Article  CAS  Google Scholar 

  59. V.S. Kurnosov, V.V. Pishko, V.V. Tsapenko, Low Temp. Phys. 33, 872 (2007). https://doi.org/10.1063/1.2796155

    Article  CAS  Google Scholar 

  60. J. Trajic, M. Gilic, N. Romcevic, M. Romcevic, Sci. Sinter. 47, 145 (2015). https://doi.org/10.2298/SOS1502145T

    Article  CAS  Google Scholar 

  61. K.K. Nanda, S.N. Sahu, R.K. Soni, S. Tripathy, Phys. Rev. B 58, 15405 (1998). https://doi.org/10.1103/PhysRevB.58.15405

    Article  CAS  Google Scholar 

  62. A. Mukherjee, M.R. Das, A. Banerjee, P. Mitra, Thin Solid Films 704, 138005 (2020). https://doi.org/10.1016/j.tsf.2020.138005

    Article  CAS  Google Scholar 

  63. N.A. Forostyanaya, L.N. Maskaeva, Z.I. Smirnova, S. Santra, G.V. Zyryanov, V.F. Markov, M.V. Kuznetsov, Thin Solid Films 657, 101 (2018). https://doi.org/10.1016/j.tsf.2018.04.031

    Article  CAS  Google Scholar 

  64. D. Kaushik, R.R. Singh, M. Sharma, D.K. Gupta, N.P. Lalla, R.K. Pandey, Thin Solid Films 515, 7070 (2007). https://doi.org/10.1016/j.tsf.2007.02.093

    Article  CAS  Google Scholar 

  65. S. Chander, M.S. Dhaka, Thin Solid Films 638, 179 (2017). https://doi.org/10.1016/j.tsf.2017.07.048

    Article  CAS  Google Scholar 

  66. L.N. Maskaeva, V.F. Markov, M.Y. Porkhachev, O.A. Mokrousova, Fire Explos. 24, 67–73 (2015). https://doi.org/10.18322/PVB.2015.24.09.67-73

    Article  Google Scholar 

  67. A.E. Bezdetnova, V.F. Markov, L.N. Maskaeva, Yu.G. Shashmurin, A.S. Frants, T.V. Vinogradova, J. Anal. Chem. 74, 1256 (2019). https://doi.org/10.1134/S1061934819120025

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was financially supported in part by 211 Program of the Government of the Russian Federation (No. 02.A03.21.0006), was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation (Themes No. AAAA-A18-118020190112-8 (“Flux”), No. AAAA-A18-118020290104-2 (“Spin”), and No. AAAA-A19-119031890025-9) and in part supported by RFBR (projects No. 18-29-11051-mk, 20-48-660041-r-a).

Funding

The research was financially supported in part by 211 Program of the Government of the Russian Federation (No. 02.A03.21.0006), was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation (Themes No. AAAA-A18-118020190112-8 (“Flux”), No. AAAA-A18-118020290104-2 (“Spin”), and No. AAAA-A19-119031890025-9) and in part supported by Russian Foundation for Basic Research (projects No. 18-29-11051-mk, 20-48-660041-r-a).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: LNM, VFM; methodology: LNM, VFM; formal analysis and investigation: IVV, VIV, OAL, EVM, VSB, INM; writing—original draft preparation: LNM, VIV, EVM; writing—review and editing: LNM, VFM, VIV, EVM.

Corresponding author

Correspondence to E. V. Mostovshchikova.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maskaeva, L.N., Vaganova, I.V., Markov, V.F. et al. Formation of CdxPb1−xS/Cd1-δS thin-film two-phase compositions by chemical bath deposition: composition, structure, and optical properties. J Mater Sci: Mater Electron 32, 19230–19247 (2021). https://doi.org/10.1007/s10854-021-06444-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06444-x

Navigation