Skip to main content
Log in

Highly active MoTe2/g-C3N4 thin films-based Pt-free counter electrode for high-performance dye-sensitized solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A cost-efficient and effective alternative counter electrode (CE) to substitute an available commercial counter electrode (CE) to make DSSCs efficient, platinum (Pt)-based CEs for dye-sensitized solar cells (DSSCs) are required. We show the development of molybdenum ditelluride (MoTe2) incorporated with graphitic carbon nitrides (g-C3N4) thin films with various aspect ratios was fabricated by chemical vapor deposition method on FTO glass substrate. Polycrystalline nature and uniform nanograins are uniformly deposited on the smooth surface of the 2D nanosheets of g-C3N4, which is confirmed by XRD, Raman, SEM, and TEM analysis. DSSC containing with MoTe2/g-C3N4 CE showed high-power conversion efficiency (PCE) of 10.21%, which is imminent that of DSSC with Pt/FTO CE (6.56%) and bare MoTe2 CE (5.88%). Moreover, the optimized MoTe2/g-C3N4 CE showed good electrocatalytic activity, highly reduction towards I3, and longer electron life span than compared with other CEs. The reduced cost and excellent electrocatalytic behavior of the thin film MoTe2 create them a substitute CE for DSSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Oregan, M. Grfitzeli, A low-cost, high-efficiency solar cell based on dye-sensitized. Nature. 353, 737–740 (1991)

    Article  CAS  Google Scholar 

  2. S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F. Curchod, N. Ashari-Astani et al., Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 6, 242–247 (2014)

    Article  CAS  Google Scholar 

  3. L. Kavan, Y.H. Yum, M. Gratzel, Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets. ACS Nano. 5, 165–72 (2010)

    Article  Google Scholar 

  4. X. Xin, M. He, W. Han, J. Jung, Z. Lin, Low-cost copper zinc tin sulfide counter 3 electrodes for high-efficiency dye-sensitized solar cells. Angew. Chem. Int. Ed. 50, 11739–11742 (2011)

    Article  CAS  Google Scholar 

  5. A. Kay, M. Grätzel, Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Sol. Energy Mater. Sol. Cells 44, 99–117 (1996)

    Article  CAS  Google Scholar 

  6. L. Kavan, J.-H. Yum, M. Grätzel, Graphene Nanoplatelets outperforming platinum as the electrocatalyst in Co-bipyridine-mediated dye-sensitized solar cells. Nano Lett. 11, 5501–5506 (2011)

    Article  CAS  Google Scholar 

  7. K. Saranya, M. Rameez, A. Subramania, Developments in conducting polymer based counter electrodes for dye-sensitized solar cells – an overview. Eur. Polym. J. 66, 207–227 (2015)

    Article  CAS  Google Scholar 

  8. H. Choi, H. Kim, S. Hwang, Y. Han, M. Jeon, Graphene counter electrodes for dye sensitized solar cells prepared by electrophoretic deposition. J. Mater. Chem. 21, 7548–7551 (2011)

    Article  CAS  Google Scholar 

  9. H. Choi, H. Kim, S. Hwang, W. Choi, M. Jeon, Dye-sensitized solar cells using graphene-based carbon nano composite as counter electrode. Sol. Energy Mater. Sol. Cells 95, 323–325 (2011)

    Article  CAS  Google Scholar 

  10. Q.W. Jiang, G.R. Li, X.P. Gao, Highly ordered TiN nanotube arrays as counter electrodes for dye-sensitized solar cells. Chem. Commun. (2009). https://doi.org/10.1039/b912776c

    Article  Google Scholar 

  11. Q.W. Jiang, G.R. Li, S. Liu, X.P. Gao, Surface-nitrided nickel with bifunctional structure as low-cost counter electrode for dye-sensitized solar cells. J. Phys. Chem. C 114, 13397–13401 (2010)

    Article  CAS  Google Scholar 

  12. M. Wu, X. Lin, Y. Wang, L. Wang, W. Guo, D. Qi, X. Peng, A. Hagfeldt, M. Grätzel, T. Ma, Economical Pt-Free catalysts for counter electrodes of dye-sensitized solar cells. J. Am. Chem. Soc. 134, 3419–3428 (2012)

    Article  CAS  Google Scholar 

  13. F. Gong, H. Wang, X. Xu, G. Zhou, Z.-S. Wang, In Situ Growth of Co0.85Se and Ni0.85Se on conductive substrates as high-performance counter electrodes for dye sensitized solar cells. J. Am. Chem. Soc. 134, 10953–10958 (2012)

    Article  CAS  Google Scholar 

  14. A. Sajedi-Moghaddam, E. Saievar-Iranizad, M. Pumera, Two-dimensional transition metal dichalcogenide/conducting polymer composites: synthesis and applications. Nanoscale 9, 8052–8065 (2017)

    Article  CAS  Google Scholar 

  15. S. Hussain, S.A. Patil, D. Vikraman, N. Mengal, H. Liu, W. Song, K.S. An, S.H. Jeong, H.S. Kim, J. Jung, Large area growth of MoTe2 films as high performance counter electrodes for dye-sensitized solar cells. Sci. Rep. 8, 29 (2018)

    Article  Google Scholar 

  16. D. Vikraman, A.A. Arbab, S. Hussain, N.K. Shrestha, S.H. Jeong, J. Jung, S.A. Patil, H.-S. Kim, Design of WSe2/MoS2 heterostructures as the counter electrode to replace Pt for dye-sensitized solar cell. ACS Sustainable Chem. Eng. 7, 13195–13205 (2019)

    Article  CAS  Google Scholar 

  17. E. Zhang, R. Chen, C. Huang, J. Yu, K. Zhang, W. Wang, S. Liu, J. Ling, X. Wan, H.Z. Lu, Tunable positive to negative magnetoresistance in atomically thin WTe2. Nano Lett. 17, 878–885 (2017)

    Article  CAS  Google Scholar 

  18. L. Zhou, K. Xu, A. Zubair, A.D. Liao, W. Fang, F. Ouyang, Y.-H. Lee, K. Ueno, R. Saito, T.S. Palacios, Large-area synthesis of high-quality uniform few-layer MoTe2. J. Am. Chem. Soc. 137, 11892–11895 (2015)

    Article  CAS  Google Scholar 

  19. N.R. Pradhan, D. Rhodes, S. Feng, Y. Xin, S. Memaran, B.-H. Moon, H. Terrones, M. Terrones, L. Balicas, Field-effect transistors based on few-layered α-MoTe2. ACS Nano 8, 5911–5920 (2014)

    Article  CAS  Google Scholar 

  20. S. Hussain, S.A. Patil, A.A. Memon, D. Vikraman, H.G. Abbas, S.H. Jeong, H.S. Kim, H.S. Kim, J. Jung, Development of a WS2/MoTe2 heterostructure as a counter electrode for the improved performance in dye-sensitized solar cells. Inorg. Chem. Front. 5, 3178–3183 (2018)

    Article  CAS  Google Scholar 

  21. S. Renukadevi, A. PricillaJeyakumari, Diam Relat Mat. 109, e108012 (2020)

    Article  Google Scholar 

  22. N.L. Heda, A. Dashora, A. Marwal, Y. Sharma, S.K. Srivastava, G. Ahmed, R. Jain, B.L. Ahuja, J. Phys. Chem. Solids 71, 187–193 (2010)

    Article  CAS  Google Scholar 

  23. J. Zhou, F. Liu, J. Lin, X. Huang, J. Xia, B. Zhang, Q. Zeng et al., Large-Area and High-Quality 2D Transition Metal Telluride. Adv. Mater. 29(3), e1603471 (2017)

    Article  Google Scholar 

  24. M. Liu, Z. Wang, J. Liu, G. Wei, J. Du, Y. Li, C. An, J. Zhang, Synthesis of few-layer 1T′-MoTe2 ultrathin nanosheets for high-performance pseudocapacitors. J. Mater. Chem. A 5(3), 1035–1042 (2017)

    Article  CAS  Google Scholar 

  25. R. BoopathiRaja, M. Parthibavarman, Hetero-structure arrays of MnCo2O4 nanoflakes at nanowires grown on Ni foam: design, fabrication and applications in electrochemical energy storage. J. Alloy. Compd. 811, e152084 (2019)

    Article  Google Scholar 

  26. R. BoopathiRaja, M. Parthibavarman, A. Nishara Begum, Hydrothermal induced novel CuCo2O4 electrode for high performance supercapacitor applications. Vacuum 165, 96–104 (2019)

    Article  CAS  Google Scholar 

  27. M. Parthibavarman, M. Karthik, S. Prabhakaran, Facile and one step synthesis of WO3 nanorods and nanosheets as an efficient photocatalyst and humidity sensing material. Vacuum 155, 224–232 (2018)

    Article  CAS  Google Scholar 

  28. L. Zhou, K. Xu, A. Zubair, A.D. Liao, W. Fang, F. Ouyang, Y.H. Lee, K. Ueno, R. Saito, T. Palacios, J. Kong, M.S. Dresselhaus, Large area synthesis of high quality uniform few-layer MoTe2. J. Am. Chem. Soc. 137, 11892–11895 (2015)

    Article  CAS  Google Scholar 

  29. A. Roy, H.C. Movva, B. Satpati, K. Kim, R. Dey, A. Rai, T. Pramanik, S. Guchhait, E. Tutuc, S.K. Banerjee, Structural and electrical properties of MoTe2 and MoSe2 grown by molecular beam epitaxy. ACS Appl. Mater. Inter. 8, 7396–7402 (2016)

    Article  CAS  Google Scholar 

  30. X.F. Li, J. Zhang, L.H. Shen, Y.M. Ma, W.W. Lei, Q.L. Cui, G.T. Zou, Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine. Appl. Phys. A:Mater. 94, 387–392 (2009)

    Article  CAS  Google Scholar 

  31. Y. Cui, Z. Ding, X. Fu, X. Wang, Construction of Conjugated Carbon Nitride Nanoarchitectures in Solution at Low Temperatures for Photoredox Catalysis. Angew. Chem. 51, 11814–11818 (2012)

    Article  CAS  Google Scholar 

  32. G. Yue, J.Y. Lin, S.Y. Tai, Y. Xiao, J. Wu, A catalytic composite film of MoS2/graphene flake as a counter electrode for Pt-free dye-sensitized solar cells. Electrochim Acta. 85, 162–168 (2012)

    Article  CAS  Google Scholar 

  33. C.W. Kung, H.W. Chen, C.Y. Lin, K.C. Huang, R. Vittal, K.C. Ho, CoS acicular nanorod arrays for the counter electrode of an efficient dye-sensitized solar cell. ACS nano. 6, 7016–7025 (2012)

    Article  CAS  Google Scholar 

  34. A. Hauch, A. Georg, Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochim. Acta 46, 3457–3466 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kannan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kannan, S., Thamaraiselvan, P., Rameshkumar, K.A. et al. Highly active MoTe2/g-C3N4 thin films-based Pt-free counter electrode for high-performance dye-sensitized solar cells. J Mater Sci: Mater Electron 32, 18330–18341 (2021). https://doi.org/10.1007/s10854-021-06374-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06374-8

Navigation