Skip to main content
Log in

Effect of chlorine on the conductivity of ZnO:Ga thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

An extensive study of the effect of various technological factors on the electrical properties of ZnO thin films obtained by DC magnetron sputtering of ZnO:Ga:Cl ceramic targets on glass substrates has been carried out. The effect of deposition temperature, film thickness, growth rate, background pressure, working gas pressure, preliminary slow-growing and undoped layers, stoichiometric deviation, and Ga and Cl concentrations has been studied. Changes in the growth rate, transparency in the ultraviolet and visible spectral ranges, morphology, crystallinity, and crystallite size have also been analyzed. It has been shown that the effect of co-doping with Cl is most significant at the lowest temperatures, which can decrease the resistivity of the films by 2 times at a deposition temperature of 100 °C. Zinc oxide thin films with a resistivity of 2.5 × 10− 4 Ω⋅cm and a figure of merit of 31 kΩ− 1 have been successfully obtained. A theoretical model taking into account various types of mobile gallium chlorides has been proposed to elucidate the advantage of co-doping with Cl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Ellmer, A. Klein, B. Rech. Transparent conductive Zinc oxide (Springer-Verlag, Berlin Heidelberg, 2008)

    Book  Google Scholar 

  2. Ü Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)

    Article  Google Scholar 

  3. M. Norouzi, M. Kolahdouz, P. Ebrahimi, M. Ganjian, R. Soleimanzadeh, K. Narimani, H. Radamson. Thermoelectric energy harvesting using array of vertically aligned Al-doped ZnO nanorods. Thin Solid Films 619, 41 (2016)

    Article  CAS  Google Scholar 

  4. M. Lalanne, J.M. Soon, A. Barnabe, L. Presmanes, I. Pasquet, Ph. Tailhades. Preparation and characterization of the defect–conductivity relationship of Ga-doped ZnO thin films deposited by nonreactive radio-frequency–magnetron sputtering. J. Mater. Res. 25, 2407 (2010)

    Article  CAS  Google Scholar 

  5. A. Kh. A.K. Abduev, A. Akhmedov, A.A. Sh. Asvarov, S.N. Abdullaev, Sulyanov, Effect of growth temperature on properties of transparent conducting gallium-doped ZnO films. Semiconductors 44, 32 (2010)

    Article  Google Scholar 

  6. E. Fortunato, L. Raniero, L. Silva, A. Gonçalves, A. Pimentel, P. Barquinha, H. Águas, L. Pereira, G. Gonçalves, I. Ferreira, E. Elangovan, R. Martins, Highly stable transparent and conducting gallium-doped zinc oxide thin films for photovoltaic applications. Solar Energy Materials & Solar Cells 92, 1605 (2008)

    Article  CAS  Google Scholar 

  7. A. Kh. A.K. Abduev, A. Akhmedov, Sh, Asvarov. Transparent conducting ZnO-based thin films deposited by magnetron sputtering of a ZnO:Ga-C composite targets. Technical physics letters 40, 618 (2014)

    Article  Google Scholar 

  8. A. Kh. A. Abduev, A.K. Sh. Asvarov, R.M. Akhmedov, V.V. Emirov, Belyaev, UV-assisted growth of transparent conducting layers based on zinc oxide. Technical physics letters 43, 1016 (2017)

    Article  Google Scholar 

  9. W. Jia Liu, D. Zhang, Q. Song, L. Ma, H. Zhang, X. Zhang, H. Ma Song, Comparative study of the sintering process and thin film sputtering of AZO, GZO and AGZO ceramics targets. Ceram. Int. 40, 12905 (2014)

    Article  Google Scholar 

  10. C.A. Gupta, S. Mangal, U.P. Singh, Impact of rapid thermal annealing on structural, optical and electrical properties of DC sputtered doped and co-doped ZnO thin film. Appl. Surf. Sci. 288, 411 (2014)

    Article  CAS  Google Scholar 

  11. M. Miyazaki, K. Sato, A. Mitsui, H. Nishimura. Properties of Ga-doped ZnO films. J. Non-Cryst. Solids 218, 323 (1997)

    Article  CAS  Google Scholar 

  12. J. Nomoto, H. Makino, T. Nakajima, T. Tsuchiya, T. Yamamoto, Improvement of the properties of direct-current magnetron-sputtered Al-doped ZnO polycrystalline films containing retained Ar atoms using 10-nm-thick buffer layers. ACS Omega 4, 14526 (2019)

    Article  CAS  Google Scholar 

  13. F.-H. Wang, C.-F. Yang, J.-C. Liou, I.-C. Chen, Effects of hydrogen on the optical and electrical characteristics of the sputter-deposited Al2O3-doped ZnO thin films. J. Nanomater. 2014: 857614 (2014)

    Google Scholar 

  14. H.S. Yoon, K.S. Lee, T.S. Lee, B. Cheong, D.K. Choi, D.H. Kim, W.M. Kim, Properties of fluorine doped ZnO thin films deposited by magnetron sputtering. Sol. Energy Mater. Sol. Cells 92, 1366 (2008)

    Article  CAS  Google Scholar 

  15. F.-H. Wang, C.-F. Yang, Y.-H. Lee, Deposition of F-doped ZnO transparent thin films using ZnF2-doped ZnO target under different sputtering substrate temperatures. Nanoscale Res. Lett. 9, 97 (2014)

    Article  Google Scholar 

  16. E. Chikoidze, M. Nolan, M. Modreanu, V. Sallet, P. Galtier, Effect of chlorine doping on electrical and optical properties of ZnO thin films. Thin Solid Films 516, 8146 (2008)

    Article  CAS  Google Scholar 

  17. F.-H. Wang, C.-L. Chang, Effect of substrate temperature on transparent conducting Al and F co-doped ZnO thin films prepared by RF magnetron sputtering. Appl. Surf. Sci. 370, 83 (2016)

    Article  CAS  Google Scholar 

  18. F. Tsin, A. Venerosy, J. Vidal, S. Collin, J. Clatot, L. Lombez, M. Paire, S. Borensztajn, C. Broussillou, P.P. Grand, S. Jaime, D. Lincot, J. Rousset. Electrodeposition of ZnO window layer for an all-atmospheric fabrication process of chalcogenide solar cell. Sci. Rep. 5, 8961 (2015)

    Article  CAS  Google Scholar 

  19. A. Jiamprasertboon, S.C. Dixon, S. Sathasivam, M.J. Powell, Y. Lu, T. Siritanon, C. J. Carmalt. Low-cost one-step fabrication of highly conductive ZnO:Cl transparent thin films with tunable photocatalytic properties via aerosol-assisted chemical vapor deposition. ACS Appl. Electron. Mater. 1, 1408 (2019)

    Article  CAS  Google Scholar 

  20. G.V. Colibaba, Sintering highly conductive ZnO:HCl ceramics by means of chemical vapor transport reactions. Ceramics international 45, 15843 (2019)

    Article  CAS  Google Scholar 

  21. G.V. Colibaba, ZnO:HCl single crystals: Thermodynamic analysis of CVT system, feature of growth and characterization. Solid State Sci. 56, 1 (2016)

    Article  CAS  Google Scholar 

  22. G.V. Colibaba, Halide-hydrogen vapor transport for growth of ZnO single crystals with controllable electrical parameters. Mater. Sci. Semicond. Process. 43, 75 (2016)

    Article  CAS  Google Scholar 

  23. G.V. Colibaba, Halide-oxide carbon vapor transport of ZnO: Novel approach for unseeded growth of single crystals with controllable growth direction. J. Phys. Chem. Solids 116, 58 (2018)

    Article  CAS  Google Scholar 

  24. G.V. Colibaba, Halide-carbon vapor transport of ZnO and its application perspectives for doping with multivalent metals. J. Solid State Chem. 266, 166 (2018)

    Article  CAS  Google Scholar 

  25. G.V. Colibaba, D. Rusnac, V. Fedorov, P. Petrenko, E.V. Monaico, Low-temperature sintering of highly conductive ZnO:Ga:Cl ceramics by means of chemical vapor transport. J. Eur. Ceram. Soc. 41, 443 (2021)

    Article  CAS  Google Scholar 

  26. G.V. Colibaba, A. Avdonin, I. Shtepliuk, M. Caraman, J. Domagała, I. Inculet. Effects of impurity band in heavily doped ZnO:HCl. Physica B: Condenced matter 553, 174 (2019)

    Article  CAS  Google Scholar 

  27. F.-H. Wang, C.-F. Yang, M.-C. Liu, Using flexible polyimide as a substrate to deposit ZnO: Ga thin films and fabricate p-i-n α-Si: H thin-film solar cells. Int. J. Photoener. 2013: 263213 (2013)

    Google Scholar 

  28. T.S. Moss, The interpretation of the properties of indium antimonide. Proc. Phys. Soc. B 67, 775 (1954)

    Article  Google Scholar 

  29. G. Haacke, New figure of merit for transparent conductors. J. Appl. Phys. 47, 4086 (1976)

    Article  CAS  Google Scholar 

  30. N. Benramdane, W.A. Murad, R.H. Misho, M. Ziane, Z. Kebbab, A chemical method for the preparation of thin films of CdO and ZnO. Mater. Chem. Phys. 48, 119 (1997)

    Article  CAS  Google Scholar 

  31. B.D. Cullity. Elements of X-ray Diffraction (Addison-Wesley Publishing Company Inc., Phillippines, 1978)

  32. A. Kuroyanagi, Crystallographic characteristics and electrical properties of Al-doped ZnO thin films prepared by ionized deposition. J. Appl. Phys. 66, 5492 (1989)

    Article  CAS  Google Scholar 

  33. S.-U. Park, J.-H. Koh. Low temperature rf-sputtered In and Al co-doped ZnO thin films deposited on flexible PET substrate. Ceram. Int. 40, 10021 (2014)

    Article  CAS  Google Scholar 

  34. S.D. Ponja, S. Sathasivam, I.P. Parkin, C. J. Carmalt. Highly conductive and transparent gallium doped zinc oxide thin films via chemical vapor deposition. Sci. Rep. 10, 638 (2020)

    Article  CAS  Google Scholar 

  35. J.-H. Kim, T.-Y. Seong, K.-J. Ahn, K.-B. Chung, H.-J. Seok, H.-J. Seo, H.-K. Kim, The effects of film thickness on the electrical, optical, and structural properties of cylindrical, rotating, magnetron-sputtered ITO films. Appl. Surf. Sci. 440, 1211 (2018)

    Article  CAS  Google Scholar 

  36. D. Gogova, A. Suwardi, Y.A. Kuznetsova, A.F. Zatsepin, L.A. Mochalov, A. Nezhdanov, B. Szyszka, Lanthanum-doped barium stannate - a new type of critical raw materials-free transparent conducting oxide. Int. J. Adv. Appl. Phys. Res. 4, 1 (2017)

    Article  Google Scholar 

  37. R.T. Tucker, N.A. Beckers, M.D. Fleischauer, M. J. Brett. Electron beam deposited Nb-doped TiO2 toward nanostructured transparent conductive thin films. Thin Solid Films 525, 28 (2012)

    Article  CAS  Google Scholar 

  38. F. Daniels, R.A. Alberty, Physical Chemistry (John Willey & Sons, New York – London, 1961)

    Google Scholar 

  39. V.P. Glushko et al., Thermodynamic properties of individual substances (Nauka Publishing House, Moscow, 1978)

    Google Scholar 

  40. G.V. Colibaba, ZnO doping efficiency by multivalent metals in complex CVT reactions. Solid State Sciences 97: 105944 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. N. Kostrikova for XRD measurements.

Funding

This work was supported by the Ministry of Education, Culture, and Research of Moldova under project No. 20.80009.5007.16 (Photosensitizers for applications in pharmaceutical medicine and photovoltaics)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Colibaba.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colibaba, G.V., Rusnac, D., Fedorov, V. et al. Effect of chlorine on the conductivity of ZnO:Ga thin films. J Mater Sci: Mater Electron 32, 18291–18303 (2021). https://doi.org/10.1007/s10854-021-06371-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06371-x

Navigation