Skip to main content

Advertisement

Log in

Improved efficiency in dye-sensitized solar cell via surface modification of TiO2 photoelectrode by spray pyrolysis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pure TiO2 and surface-modified TiO2 (SMT) films have been developed using zinc acetate solution on fluorine-doped SnO2 (FTO) substrates via spray pyrolysis technique for the application in dye-sensitized solar cells (DSSCs). X-ray diffraction (XRD) profiles indicate that pure TiO2 and SMT exhibit the same crystal structure. Optical absorption studies reveal that there is no significant absorption difference between SMT and pure TiO2. Impedance measurements show that ZnO layer-covered TiO2 nanoparticles particularly increase the impedance and also suppress the reverse transmission of photo-induced electrons ejected from SMT electrode to the electrolyte. Surface morphological and elemental studies have been performed using field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray analysis (EDX) respectively. The photoelectrochemical (JV curves) values of DSSCs for pure TiO2 and SMT thin films have been compared. The results show that the photoelectric current (JSC) of pure TiO2 increased from 16.73 to 18.09 mA cm−2. Additionally, open-circuit voltage (VOC) of DSSCs containing SMT thin films appreciably changed from 0.71 to 0.75 V. This indicates that the ZnO layer on TiO2 nanoparticles contributes to the surface resistance, which impedes the flow of back-scattered electrons to the electrolyte significantly. The incident light conversion into power efficiency of the DSSCs has been increased from 8.25 to 9.3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B.O. Regan, M. Grätzel, Nature 353, 737 (1991)

    Article  Google Scholar 

  2. S.J. Wu, H.W. Han, Q.D. Tai, S. Xu, C.G. Zhou, Y. Yang, H. Hu, B.-L. Chen, B. Sebo, Nanotechnology 19, 215704 (2008)

    Article  CAS  Google Scholar 

  3. X.-T. Xu, L. Pan, X.-W. Zhang, L. Wang, J.-J. Zou, Adv. Sci. (Weinh.) 6(2), 1801505 (2019)

    Google Scholar 

  4. M. Ye, X. Wen, M.-G. Wang, J. Iocozzia, N. Zhang, C.J. Lin, Z.Q. Lin, Mater. Today 18, 155 (2015)

    Article  CAS  Google Scholar 

  5. J.-P. Correa-Baena, W.-G. Tress, K. Domanski, E.-H. Anaraki, S.-H. Turren-Cruz, B. Roose, P.P. Boix, M. Grätzel, M. Saliba, A. Abate, A. Hagfeldt, Energy Environ. Sci. 10, 1207 (2017)

    Article  CAS  Google Scholar 

  6. S. Lattante, Electronics 3, 132 (2014)

    Article  CAS  Google Scholar 

  7. D. Dastan, Appl. Phys. A 123, 699 (2017)

    Article  CAS  Google Scholar 

  8. V.M. Mohan, M. Shimomura, K. Murakami, J. Nanosci. Nanotechnol. 11, 1 (2011)

    Article  CAS  Google Scholar 

  9. D. Dastan, J. At. Mol. Condens. Nano Phys. 2, 109 (2015)

    Article  Google Scholar 

  10. V. Madhu Mohan, K. Murakami, Jpn. J. Appl. Phys. 51, 2 (2012)

    Google Scholar 

  11. D. Dastan, S.L. Panahi, A. Yengantwar, A.G. Banpurkar, Adv. Sci. Lett. 22, 950 (2016)

    Article  Google Scholar 

  12. S. Neubert, A. Ramakrishnan, J. Strunk, H.Y. Shi, B.T. Mei, L.D. Wang, M. Bledowski, D.A. Guschin, M. Kauer, Y.M. Wang, M. Muhler, R. Beranek, ChemPlusChem 79, 163 (2014)

    Article  CAS  Google Scholar 

  13. L.-Q. Sun, J. Guan, Q. Xu, X.-Y. Yang, J. Wang, X.-Y. Hu, Polymers (Basel) 10, 1248 (2018)

    Article  CAS  Google Scholar 

  14. A. Ramakrishnan, S. Neubert, B. Mei, J. Strunk, L.D. Wang, M. Bledowski, M. Muhler, R. Beranek, Chem. Commun. 48, 8556 (2012)

    Article  CAS  Google Scholar 

  15. Q. Zhou, J. Zhou, M. Zeng, G. Wang, C. Yongjun, L. Shiwei, Nanoscale Res. Lett. 12, 261 (2017)

    Article  CAS  Google Scholar 

  16. N. Vaenas, T. Stergiopoulos, A.G. Kontos, V. Likodimos, P. Falaras, Electrochim. Acta 113, 490 (2013)

    Article  CAS  Google Scholar 

  17. A.M. Abd-Elnaiem, A. Gabe, Int. J. Electrochem. Sci. 8, 9741 (2013)

  18. A. Sedghi, H.N. Miankushk, Int. J. Electrochem. Sci. 7, 12078 (2012)

    CAS  Google Scholar 

  19. L-T. Yan, F-L. Wu, L. Peng, L-J. Zhang, P-J. Li, S-Y. Dou,and T-X. Li, Inter. National. J. Photo Energy, 2012, Article ID 613969 | https://doi.org/10.1155/2012/613969 (2012)

  20. Z. Sun, J.-H. Kim, Y. Zhao, D. Attard, S.X. Dou, Chem. Commun. 49, 966 (2013)

    Article  CAS  Google Scholar 

  21. M.I. Khan, J. Results Phys. 9, 359 (2018)

    Article  Google Scholar 

  22. M. Rani, S.K. Tripati, J. Electron. Mater. 44, 1151 (2015)

    Article  CAS  Google Scholar 

  23. Y.H. Jung, K.H. Park, J.S. Oh, D.H.C.K. Kim, Nanoscale Res. Lett. 8, 473 (2013)

    Article  CAS  Google Scholar 

  24. W.-H. Chen, Q. Luo, X.-S. Deng, J.-F. Zheng, C.-X. Zhang, X.-H. Chen, S.-M. Huang, RSC Adv. 7, 54068 (2017)

    Article  CAS  Google Scholar 

  25. R.D. Silva, L.G.C. Rego, J. Freire, J. Rodriguez, D. Laria, V.S. Batista, J. Phys. Chem. C 114, 19433 (2010)

    Article  CAS  Google Scholar 

  26. M.M. Maitani, K. Tanaka, Q. Shen, T. Toyoda, Y. Wada, Phys. Chem. Chem. Phys. 19, 22129 (2017)

    Article  CAS  Google Scholar 

  27. S.H. Kang, J.Y. Kim, Y.E. Sung, Electrochim. Acta 52, 5242 (2007)

    Article  CAS  Google Scholar 

  28. K. Shan, Z.-Z. Yi, X.-T. Yin, L. Cui, D. Dastan, H. Garmestani, F.M. Alamgir, J. Alloys Compd. 855, 157465 (2021)

    Article  CAS  Google Scholar 

  29. K. Shan, Z.-Z. Yi, X.-T. Yin, D. Dastan, S. Dadkhah, B.T. Coates, H. Garmestani, Adv. Powder Technol. 31, 4657 (2020)

    Article  CAS  Google Scholar 

  30. V.M. Mohan, M. Shimomura, K. Murakami, J. Nanosci. Nanotechnol. 11, 1 (2011)

    Article  CAS  Google Scholar 

  31. K. Shan, F.R. Zhai, Z.-Z. Yi, X.-T. Yin, D. Dastan, F. Tajabadi, A. Jafari, S. Abbasi, Surf. Interfaces 23, 100905 (2021)

    Article  CAS  Google Scholar 

  32. M.C. Kao, H.Z. Chen, S.L. Young, Appl. Phys. A 97, 469 (2009)

    Article  CAS  Google Scholar 

  33. D. Dastan, N.B. Chaure, J. Mater. Mech. Manuf. 2, 21 (2014)

    CAS  Google Scholar 

  34. R. Shakoury, A. Arman, S. Talu, D. Dastan, C. Luna, S. Rezaee, Opt. Quantum Electron. 52, 270 (2020)

    Article  CAS  Google Scholar 

  35. O. Ola, M.M. Maroto-Valer, J. Photochem. Photobiol. C 24, 64 (2015)

    Article  CAS  Google Scholar 

  36. M. De. Laurentis, A. Irace, J. Solid State Phys. (2014). https://doi.org/10.1155/2014/291469

    Article  Google Scholar 

  37. H. Dong, S.-H. Pang, Y. Zhang, D.-Z. Chen, W.-D. Zhu, H. Xi, J.-J. Chang, J.-C. Zhang, C.-F. Zhang, Y. Hao, Nanomaterials 8, 720 (2018)

    Article  CAS  Google Scholar 

  38. E. Ronca, M.C. Pastore, L. Belpassi, F. Tarantelli, F.D. Angelis, Energy Environ. Sci. 6, 183 (2013)

    Article  CAS  Google Scholar 

  39. H. Zuo, W. Fu, R. Fan, D. Dastan, H. Wang, Z. Shi, Mater. Lett. 263, 127217 (2020)

    Article  CAS  Google Scholar 

  40. N. Haghnegahdar, M.A. Tarighat, D. Dastan, J. Mater. Sci. Mater. Electron. 32, 5602 (2021)

    Article  CAS  Google Scholar 

  41. M. Asadzadeh, F. Tajabadi, D. Dastan, P. Sangpour, Z. Shi, N. Taghavinia, Ceram. Int. 47, 5487–5494 (2021)

    Article  CAS  Google Scholar 

  42. T. Suresh, J.-Y. Park, C.-T. Thanh Thuy, D.-K. Lee, B.-K. Min, H.-J. Yun, J.-H. Kim, ACS Sustain. Chem. Eng. 6, 13025 (2018)

    Article  CAS  Google Scholar 

  43. M. Kaur, N.K. Verma, J. Mater. Sci. Technol. 30, 328 (2014)

    Article  CAS  Google Scholar 

  44. S.-Y. Kuo, J.-F. Yang, F. Lai, Nanoscale Res. Lett. 20149, 206 (2014)

    Article  CAS  Google Scholar 

  45. X.-L. Zhang, E.M.J. Johansson, J. Mater. Chem. A 5, 303 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS, Grant-in-Aid for Scientific Research (C) (21560325).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varishetty Madhu Mohan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhu Mohan, V., Murakam, K., Jonnalagadda, M. et al. Improved efficiency in dye-sensitized solar cell via surface modification of TiO2 photoelectrode by spray pyrolysis. J Mater Sci: Mater Electron 32, 18231–18239 (2021). https://doi.org/10.1007/s10854-021-06366-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06366-8

Navigation