Skip to main content

Advertisement

Log in

Poly(acrylonitrile butadiene styrene)/poly(vinylidene fluoride) binary blends films with superior breakdown strength and discharge efficiency

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Poly(vinylidene fluoride) (PVDF) ferroelectric polymer with high dielectric constant has been emerged as promising candidate for advanced electrostatic capacitors. However, the intrinsic high ferroelectric loss of PVDF can cause suppressed discharge efficiency, which greatly hinders its applicability. In this work, a polymer-blending approach using linear dielectric component poly(acrylonitrile butadiene styrene) (ABS) is proposed to alleviate the low discharge efficiency issue in PVDF. The ABS-containing high-polarity acrylonitrile monomer demonstrates to show excellent compatibility with PVDF and reduce PVDF ferroelectric domains. With weakened ferroelectric domains coupling, the blends perform significantly enhanced discharge efficiency. For instance, with a moderate discharge energy density of 5.7 J/cm3, a rather high discharge efficiency of 82% can be obtained in blends with a composition content of 50/50 under 400 MV/m while that of PVDF is only 55%. Additionally, the blends exhibit superior operation reliability against pure PVDF, suggesting its feasibility as viable capacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. X.T. Ren, N. Meng, H.X. Yan, E. Bilotti, M.J. Reece, Remarkably enhanced polarisability and breakdown strength in PVDF-based interactive polymer blends for advanced energy storage applications. Polymer 168, 246–254 (2019)

    Article  CAS  Google Scholar 

  2. W.T. Wei, C. Huang, L.Y. Zhang, Y. Wang, M.Y. Xu, Y. Deng, Design on polarization distribution in all-organic polymer hybrids for high density energy storage. Chem. Eng. J. 394, (2020)

    Article  CAS  Google Scholar 

  3. S.L. Zhong, Z.M. Dang, W.Y. Zhou, H.W. Cai, Past and future on nanodielectrics. IET Nanodielectr. 1, 41–47 (2018)

    Article  Google Scholar 

  4. B. Liu, M.H. Yang, W.Y. Zhou, H.W. Cai, S.L. Zhong, M.S. Zheng, Z.M. Dang, High energy density and discharge efficiency polypropylene nanocomposites for potential high-power capacitor. Energy Storage Mater. 27, 443–452 (2020)

    Article  Google Scholar 

  5. L. Zhu, Exploring strategies for high dielectric constant and low loss polymer dielectrics. J. Phys. Chem. Lett. 5, 3677–3687 (2014)

    Article  CAS  Google Scholar 

  6. Q.G. Chi, T. Ma, Y. Zhang, Y. Cui, C.H. Zhang, J.Q. Lin, X. Wang, Q.Q. Lei, Significantly enhanced energy storage density for poly(vinylidene fluoride) composites by induced PDA-coated 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 nanofibers. J. Mater. Chem. A. 5, 16757–16766 (2017)

    Article  CAS  Google Scholar 

  7. Y.C. Xie, W.R. Jiang, T. Fu, J.J. Liu, Z.C. Zhang, S.N. Wang, Achieving high energy density and low loss in PVDF/BST nanodielectrics with enhanced structural homogeneity. ACS Appl. Mater. Interfaces. 10, 29038–29047 (2018)

    Article  CAS  Google Scholar 

  8. Q.M. Wang, J.M. Zhang, Z.D. Zhang, Y.N. Hao, B. Ke, Enhanced dielectric properties and energy storage density of PVDF nanocomposites by co-loading of BaTiO3 and CoFe2O4 nanoparticles. Adv. Compos. Hybrid Mater. 3, 58–65 (2020)

    Article  CAS  Google Scholar 

  9. V.K. Prateek, R.K. Thakur, Gupta, recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem. Rev. 116, 4260–4317 (2016)

    Article  CAS  Google Scholar 

  10. Y.P. Xu, T. Wang, X. Shi, Enhanced dielectric and capacitive performance in polypropylene/poly(vinylidene fluoride) binary blends compatibilized with polydopamine. Mater. Des. 195, (2020)

    Article  CAS  Google Scholar 

  11. Y.B. Liu, J.H. Gao, Y. Wang, J. Zhou, L. Cao, Z.X. He, Y. Zhang, C. Tang, L.S. Zhong, Enhanced temperature stability of high energy density ferroelectric polymer blends: the spatial confinement effect. Macromol. Rapid Commun. 40, 1–5 (2019)

    Article  CAS  Google Scholar 

  12. X.D. Zhao, J.P. Cao, J. Zhao, G.H. Hu, Z.M. Dang, Advanced dielectric polymer nanocomposites by constructing a ternary continuous structure in polymer blends containing poly(methyl methacrylate) (PMMA) modified carbon nanotubes. J. Mater. Chem. A 2, 10614–10622 (2014)

    Article  CAS  Google Scholar 

  13. B.H. Fan, M.Y. Zhou, C. Zhang, J.K. Yuan, D.L. He, Y. Liu, P. Haghi-Ashtiani, J.B. Bai, Improved dielectric properties in polypropylene/poly(vinylidene fluoride) binary blends containing boron nitride nanosheets: toward high-voltage current application. J. Phys. Chem. C 123, 11993–12000 (2019)

    Article  CAS  Google Scholar 

  14. W.P. Li, L. Jiang, X. Zhang, Y. Shen, C.W. Nan, High-energy-density dielectric films based on polyvinylidene fluoride and aromatic polythiourea for capacitors. J. Mater. Chem. A 2, 15803–15807 (2014)

    Article  CAS  Google Scholar 

  15. F. Wen, L. Zhang, P. Wang, L.L. Li, J.G. Chen, C. Chen, W. Wu, G.F. Wang, S.J. Zhang, A high-temperature dielectric polymer poly(acrylonitrile butadiene styrene) with enhanced energy density and efficiency due to a cyano group. J. Mater. Chem. A 8, 15122–15129 (2020)

    Article  CAS  Google Scholar 

  16. R.A. Kudva, H. Keskkula, D.R. Paul, Properties of compatibilized nylon 6/ABS blends: part I. Effect of ABS type. Polymer 41, 225–237 (2000)

    Article  CAS  Google Scholar 

  17. M.L. Xue, Y.L. Yu, H.H. Chuah, J.M. Rhee, N.H. Kim, J.H. Lee, Miscibility and compatibilization of poly(trimethylene terephthalate)/acrylonitrile-butadiene-styrene blends. Eur. Polym. J. 43, 3826–3837 (2007)

    Article  CAS  Google Scholar 

  18. S.J. Kang, Y.J. Park, I. Bae, K.J. Kim, H.C. Kim, S. Bauer, E.L. Thomas, C. Park, Printable ferroelectric PVDF/PMMA blend films with ultralow roughness for low voltage non-volatile polymer memory. Adv. Funct. Mater. 19, 2812–2818 (2019)

    Article  Google Scholar 

  19. W.Z. Ma, J. Zhang, S.J. Chen, X.L. Wang, Crystallization behavior and hydrophilicity of poly (vinylidene fluoride) (PVDF)/poly (styrene-co-acrylonitrile) (SAN) blends. Colloid Polym. Sci. 286, 1193–1202 (2008)

    Article  CAS  Google Scholar 

  20. L. Yang, T.Z. Qiu, M.X. Shen, H.Y. He, H.J. Huang, Metal-organic frameworks Co3[Co(CN)6]2: a promising candidate for dramatically reinforcing the piezoelectric activity of PVDF. Compos. Sci. Technol. 196, 108232 (2020)

    Article  CAS  Google Scholar 

  21. R. Jr Gregorio, Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions. J. Appl. Polym. Sci. 100, 3272–3279 (2006)

    Article  CAS  Google Scholar 

  22. P. Martins, A.C. Lopes, S. Lanceros-Mendez, Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 39, 683–706 (2014)

    Article  CAS  Google Scholar 

  23. C.Y. Xing, M.M. Zhao, L.P. Zhao, J.C. You, X.J. Cao, Y.J. Li, Ionic liquid modified poly(vinylidene fluoride): crystalline structures, miscibility, and physical properties. Polym. Chem. 4, 5726–5734 (2013)

    Article  CAS  Google Scholar 

  24. F.A. He, K. Lin, D.L. Shi, H.J. Wu, H.K. Huang, J.J. Chen, F. Chen, K.H. Lam, Preparation of organosilicate/PVDF composites with enhanced piezoelectricity and pyroelectricity by stretching. Compos. Sci. Technol. 137, 138–147 (2016)

    Article  CAS  Google Scholar 

  25. L. Yang, H.L. Ji, K.J. Zhu, J. Wang, J.H. Qiu, Dramatically improved piezoelectric properties of poly (vinylidene fluoride) composites by incorporating aligned TiO2@MWCNTs. Compos. Sci. Technol. 12, 259–267 (2016)

    Article  Google Scholar 

  26. D.L. Chinaglia, R. Gregório Jr., D.R. Vollet, Structural modifications in stretch-induced crystallization in PVDF films as measured by small-angle X-ray scattering. J. Appl. Polym. Sci. 125, 527–535 (2013)

    Article  Google Scholar 

  27. Y.C. Xie, Y.Y. Yu, Y.F. Feng, W.R. Jiang, Z.C. Zhang, Fabrication of stretchable nanocomposites with high energy density and low loss from cross-linked PVDF filled with poly(dopamine) encapsulated BaTiO3. ACS Appl. Mater. Interfaces. 9, 2995–3005 (2017)

    Article  CAS  Google Scholar 

  28. J. Fu, Y.D. Hou, M.P. Zheng, Q.Y. Wei, M.K. Zhu, H. Yan, Improving dielectric properties of PVDF composites by employing surface modified strong polarized BaTiO3 particles derived by molten salt method. ACS Appl. Mater. Interfaces. 7, 24480–24491 (2015)

    Article  CAS  Google Scholar 

  29. Z.B. Pan, L.M. Yao, G.L. Ge, B. Shen, J.W. Zhai, High-performance capacitors based on NaNbO3 nanowires/poly(vinylidene fluoride) nanocomposites. J. Mater. Chem A 6, 14614–14622 (2018)

    Article  CAS  Google Scholar 

  30. L. Yang, Q.Y. Zhao, K.N. Chen, Y.Z. Ma, M.X. Shen, H.Y. He, H.J. Huang, H.L. Ji, Z.F. Wang, J.H. Qiu, Simultaneously realizing ultra-high energy density and discharge efficiency in PVDF composites loaded with highly aligned hollow MnO2 microspheres. Compos. Part A-Appl. Sci. Manuf. 132, 105820 (2020)

    Article  CAS  Google Scholar 

  31. P. Khanchaitit, K. Han, M.R. Gadinski, Q. Li, Q. Wang, Ferroelectric polymer networks with high energy density and improved discharged efficiency for dielectric energy storage. Nat. Commun. 10, 3845 (2013)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51905149), China Postdoctoral Research Funding (No. 2020M681473), Jiangsu Postdoctoral Research Funding (2020Z015), Fundamental Research Funds for the Central Universities (No. B200202130), and Nantong Science and technology Bureau (No. JC2019003, JC2019086).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongguang Sun or Jinhao Qiu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 289 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Bao, H., Dai, Y. et al. Poly(acrylonitrile butadiene styrene)/poly(vinylidene fluoride) binary blends films with superior breakdown strength and discharge efficiency. J Mater Sci: Mater Electron 32, 17230–17240 (2021). https://doi.org/10.1007/s10854-021-06200-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06200-1

Navigation