Skip to main content

Advertisement

Log in

Microstructure and properties of a vacuum-tempered glass with low-temperature-sintered silver paste

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A low-temperature sintered silver paste was used for the metallization of tempered glass, which was used to prepare vacuum-tempered glass by soldering with Sn96.5Ag3Cu0.5 paste (SAC305). The effects of the glass content and the sintering temperature on the microstructures, shear strengths, and fracture mechanisms of the bondlines were investigated in detail. The microstructure of the thick silver film and its interface with the tempered glass was characterized. The dissolution and precipitation behaviors of silver in Bi–B–Zn glass were also analyzed. Bi4B2O9 crystals were detected in the microstructure of the thick silver film when the joining temperature was increased above 450 °C, which can strengthen the silver film and the interface with the tempered glass. After soldering at 450 °C for 10 min, an excellent bondline was formed using the low-temperature sintered paste, which had a shear strength of 42.3 ± 2.4 MPa and a leak rate of 7.2 ± 0.4 × 10–3 Pa.cm3/s. The sintered paste had a composition of 80 wt.% silver and 20 wt.% glass powder. Furthermore, heat transfer tests revealed that the vacuum tempered glass had excellent thermal insulation properties. The results showed that the low-temperature sintered silver paste combined with soldering was an effective method to prepare vacuum-tempered glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R.E. Collins, T.M. Simko, Current status of the science and technology of vacuum glazing(J). Sol. Energy. 62(3), 189–213 (1998)

    Article  Google Scholar 

  2. Y. Fang, P.C. Eames, B. Norton et al., Experimental validation of a numerical model for heat transfer in vacuum glazing(J). Sol. Energy. 80(5), 564–577 (2006)

    Article  CAS  Google Scholar 

  3. E. Cuce, P.M. Cuce, Vacuum glazing for highly insulating windows: Recent developments and future prospects(J). Renew. Sustain. Energy Rev. 54, 1345–1357 (2016)

    Article  Google Scholar 

  4. P.C. Eames, Vacuum glazing: Current performance and future prospects(J). Vacuum 82(7), 717–722 (2008)

    Article  CAS  Google Scholar 

  5. L. Jun, Z. Min Hong, Study on the properties and manufacturing technology of vacuum plate glass(J). Equip. Manufact. Technol. 12, 165–167 (2014)

    Google Scholar 

  6. S. Memon, P.C. Eames, Design and development of lead-free glass-metallic vacuum materials for the construction and thermal performance of smart fusion edge-sealed vacuum glazing(J). Energ. Buildings. 227, 110430 (2020)

    Article  Google Scholar 

  7. S. Memon, Experimental measurement of hermetic edge seal’s thermal conductivity for the thermal transmittance prediction of triple vacuum glazing(J). Case Stud. Thermal Eng. 10, 169–178 (2017)

    Article  Google Scholar 

  8. S. Memon, F. Farukh, P.C. Eames et al., A new low-temperature hermetic composite edge seal for the fabrication of triple vacuum glazing(J). Vacuum 120, 73–82 (2015)

    Article  CAS  Google Scholar 

  9. C.F. Wilson, T.M. Simko, R.E. Collins, Heat conduction through the support pillars in vacuum glasing(J). Sol. Energy. 63(6), 393–406 (1998)

    Article  CAS  Google Scholar 

  10. Z. Weitong, H. Dongfang, J. Chunwei, Relevance between parameters of support and thermal conductivity of tempered vacuum insulated glass(J). Build. Energy Efficiency. 48(05), 111–114 (2020)

    Google Scholar 

  11. T. JIanzheng, T. Xiaobei, H. Yuzhi, Current Status and Prospects of Vacuum Glass Industry (J). Archit. Glass Indus Glass. 2 3–7 (2020)

  12. Y. Jin, Z. Lei, X. Tong et al., (2020) Research progress on recycling technology of lead-containing glass in waste cathode ray tubes(J). IOP Conf. Series Earth Environ. Sci. 446: 22047

  13. Q. Sun, W. Yang, Y. Liu et al., Microstructure and mechanical properties of tempered glass joint bonded with Bi-B-Zn low melting glass(J). J. Mater. Process. Tech. 271, 404–412 (2019)

    Article  CAS  Google Scholar 

  14. G.H. Hwang, W.Y. Kim, H.J. Jeon et al., Physical Properties of Barrier Ribs of Plasma Display Panels: II, Effects of Fillers(J). J. Am. Ceram. Soc. 85(12), 2961–2964 (2002)

    Article  CAS  Google Scholar 

  15. T. Naito, T. Aoyagi, Y. Sawai et al., (2011) Lead-free low-melting and semiconductive vanadate glass applicable to low-temperature sealing(J). Jpn. J. Appl. Phys. 50(8): 88002

  16. F. Heydari, A. Maghsoudipour, Z. Hamnabard et al., Evaluation on properties of CaO–BaO–B2O3–Al2O3–SiO2 glass-ceramic sealants for intermediate temperature solid oxide fuel cells(J). J. Mater. Sci. Technol. 29(1), 49–54 (2013)

    Article  CAS  Google Scholar 

  17. P. Lin, T. Lin, P. He et al., Investigation of microstructure and mechanical property of Li–Ti ferrite/Bi2O3–B2O3–SiO2 glass/Li–Ti ferrite joints reinforced by FeBi5Ti3O15 whiskers(J). J. Eur. Ceram. Soc. 35(9), 2453–2459 (2015)

    Article  CAS  Google Scholar 

  18. E. R. Shaaban, M. Shapaan, Y. B. Saddeek. Structural and thermal stability criteria of Bi2O3–B2O3 glasses. Journal of physics. Condensed Matter. 20(15),155108 (2020)

  19. V. Chidambaram, J. Hattel, J. Hald, High-temperature lead-free solder alternatives(J). Microelectron. Eng. 88(6), 981–989 (2011)

    Article  CAS  Google Scholar 

  20. Y. Fang, T.J. Hyde, F. Arya et al., Indium alloy-sealed vacuum glazing development and context(J). Renew. Sustain. Energy Rev. 37, 480–501 (2014)

    Article  CAS  Google Scholar 

  21. S. Kim, K. Kim, K. Suganuma et al., Interfacial Reactions of Si Die Attachment with Zn-Sn and Au-20Sn High Temperature Lead-Free Solders on Cu Substrates(J). J. Electron. Mater. 38(6), 873–883 (2009)

    Article  CAS  Google Scholar 

  22. G. Zhao, G. Sheng, J. Luo et al., Solder Characteristics of a Rapidly Solidified Sn-9Zn-0.1Cr Alloy and Mechanical Properties of Cu/Solder/Cu Joints(J). J. Electron. Mater. 41(8), 2100–2106 (2012)

  23. D. Burnat, P. Ried, P. Holtappels et al., The rheology of stabilised lanthanum strontium cobaltite ferrite nanopowders in organic medium applicable as screen printed SOFC cathode layers(J). Fuel CellsNA-NA (2009)

  24. M.R. Somalu, V. Yufit, I.P. Shapiro et al., The impact of ink rheology on the properties of screen-printed solid oxide fuel cell anodes(J). Int. J. Hydrogen Energ. 38(16), 6789–6801 (2013)

    Article  CAS  Google Scholar 

  25. S. Murakami, K. Ri, T. Itoh et al., Effects of ethyl cellulose polymers on rheological properties of (La, Sr)(Ti, Fe)O3-terpineol pastes for screen printing(J). Ceram. Int. 40(1), 1661–1666 (2014)

    Article  CAS  Google Scholar 

  26. S.P. Wu, Q.Y. Zhao, L.Q. Zheng et al., Behaviors of ZnO-doped silver thick film and silver grain growth mechanism(J). Solid State Sci. 13(3), 548–552 (2011)

    Article  CAS  Google Scholar 

  27. J. Tsai, S. Lin, Silver powder effectiveness and mechanism of silver paste on silicon solar cells(J). J. Alloy. Compd. 548, 105–109 (2013)

    Article  CAS  Google Scholar 

  28. D. Kim, S. Shim, S. Hwang et al., Electrical properties of screen-printed silicon solar cell dependent upon thermophysical behavior of glass frits in Ag pastes(J). Jpn. J. Appl. Phys. 48(5), 5 (2009)

  29. Q. Huang, Q. Sun, H. Hu et al., Thermal effect in the process of surface acoustic wave atomization(J). Exp. Therm. Fluid Sci. 120, 110257 (2021)

  30. W. Yang, Q. Sun, Q. Lei et al., Formation of a highly conductive thick film by low-temperature sintering of silver paste containing a Bi2O3-B2O3-ZnO glass frit(J). J. Mater. Process. Tech. 267, 61–67 (2019)

    Article  CAS  Google Scholar 

  31. Y. Li, W. Gan, J. Zhou et al., Glass frits coated with silver nanoparticles for silicon solar cells(J). Appl. Surf. Sci. 341, 127–133 (2015)

    Article  CAS  Google Scholar 

  32. A.S. Ionkin, B.M. Fish, Z.R. Li et al., Screen-printable silver pastes with metallic nano-zinc and nano-zinc alloys for crystalline silicon photovoltaic cells(J). ACS Appl. Mater. Inter. 3(2), 606–611 (2011)

    Article  CAS  Google Scholar 

  33. S. Yao, J. Xing, J. Zhang et al., Microscopic investigation on sintering mechanism of electronic silver paste and its effect on electrical conductivity of sintered electrodes(J). J. Mater. Sci.: Mater. Electron. 29(21), 18540–18546 (2018)

    CAS  Google Scholar 

  34. D. Kim, H. Kim, Effect of bismate frits under fast firing on reactions between ag electrodes and Si wafer for Si solar cells(J). J. Am. Ceram. Soc. 96(3), 774–780 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors (Qin Sun, Guoji Sun, Yihan Liu, Yufeng Li, Hongtao Chen, Mingyu Li, Chunjin hang, Wenbo Zhu) wish to thank the support by the Shenzhen Science and Technology Plan under Grant No. JCYJ20190806143814935 Science and Technology Innovation Committee of Shenzhen No. JCYJ20180306172006392.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunjin Hang or Wenbo Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q., Sun, G., Liu, Y. et al. Microstructure and properties of a vacuum-tempered glass with low-temperature-sintered silver paste. J Mater Sci: Mater Electron 32, 16230–16241 (2021). https://doi.org/10.1007/s10854-021-06171-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06171-3

Navigation