Skip to main content
Log in

Dielectric relaxation in amorphous and crystalline Sb2Te3 thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sb2Te3 is an endpoint of the GeTe-Sb2Te3 quasi-binary tie-line that represents phase-change alloys widely used in optical and non-volatile phase-change memory devices. In the crystalline form it is also a prototypical topological insulator with a layered structure where covalently bonded quintuple layers are held together by weak van der Waals forces. One of the ways to fabricate a crystalline phase is solid-state crystallization of an amorphous film, whereby the three-dimensional (3D) structure relaxes to the two-dimensional (2D) crystalline phase. The mechanism of the 3D-2D transformation remains unclear. In this work, we performed a study of relaxation processes in thin Sb2Te3 films in both amorphous and crystalline phases. We found that both phases possess two kinds of relaxators (type I and type II), where the type I fragments are identical in the two phases, while the relaxation of type II fragments are shifted to lower temperature in the amorphous phases. The activation energies of the associated relaxation processes and the values of the Havriliak–Negami parameters were determined. The differences between the relaxation processes in the two phases are discussed. The obtained result will contribute to better understanding of the 3D-2D transformation during the crystallization of van der Waals solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. K. Rajasekar, L. Kungumadevi, A. Subbarayan, R. Sathyamoorthy, Ionics 14, 69 (2008). https://doi.org/10.1007/s11581-007-0146-3

    Article  CAS  Google Scholar 

  2. L.M. Goncalves, C. Couto, P. Alpuim, D.M. Rowe, J.H. Correia, Sens. Actuators 130–131, 346 (2006). https://doi.org/10.1016/j.sna.2005.10.014

    Article  CAS  Google Scholar 

  3. J. Boguslawski, J. Sotor, G. Sobon, J. Tarka, J. Jagiello, W. Macherzynski, L. Lipinska, K.M. Abramski, Laser Phys. 24, 105111 (2014). https://doi.org/10.1088/1054-660X/24/10/105111

    Article  CAS  Google Scholar 

  4. T. Ohta, J. Optoelectron. Adv. Mater. 3, 609 (2001)

    CAS  Google Scholar 

  5. J. Choe, Intel 3D XPoint memory die removed from Intel Optane™ PCM (phase change memory). (TechInsights Inc., 2017), https://www.techinsights.com/blog/intel-3d-xpoint-memory-die-removed-intel-optanetm-pcm-phase-change-memory.

  6. A.M. Farid, H.E. Atyia, N.A. Hegab, Vacuum 80, 284 (2005). https://doi.org/10.1016/j.vacuum.2005.05.003

    Article  CAS  Google Scholar 

  7. J.Y. Yang, W. Zhu, X.H. Gao, X.A. Fan, S.Q. Bao, X.K. Duan, Electrochim. Acta 52, 3035 (2007). https://doi.org/10.1016/j.electacta.2006.09.045

    Article  CAS  Google Scholar 

  8. A.E. Abken, O.J. Bartelt, Thin Solid Films 403, 216 (2002). https://doi.org/10.1016/S0040-6090(01)01527-9

    Article  Google Scholar 

  9. İY. Erdoğan, Ü. Demir, J. Electroanal. Chem. 633, 253 (2009). https://doi.org/10.1016/j.jelechem.2009.06.010

    Article  CAS  Google Scholar 

  10. H.S. Soliman, S. Yaghmour, H.G. Al-Solami, Eur. Phys. J. Appl. Phys. 44, 59 (2008). https://doi.org/10.1051/epjap:2008132

    Article  CAS  Google Scholar 

  11. J.E. Boschker, J. Momand, V. Bragaglia, R. Wang, K. Perumal, A. Giussani, B.J. Kooi, H. Riechert, R. Calarco, Nano Lett. 14, 3534 (2014). https://doi.org/10.1021/nl5011492

    Article  CAS  Google Scholar 

  12. R. Venkatasubramanian, T. Colpitts, E. Watko, M. Lamvik, N. El-Masry, J. Cryst. Growth 170, 817 (1997). https://doi.org/10.1016/S0022-0248(96)00656-2

    Article  CAS  Google Scholar 

  13. K. Ulutas, D. Deger, S. Yakut, J. Phys, J. Phys.Conf. Ser. 417, 012040 (2013). https://doi.org/10.1088/1742-6596/417/1/012040

    Article  CAS  Google Scholar 

  14. Y. Saito, S. Hatayama, Y. Shuang, P. Fons, A.V. Kolobov, Y. Sutou, Sci. Rep. 11, 4782 (2021). https://doi.org/10.1038/s41598-020-80301-5

    Article  CAS  Google Scholar 

  15. Y. Saito, P. Fons, A.V. Kolobov, K. Mitrofanov, K. Makino, J. Tominaga, S. Hatayama, Y. Sutou, M. Hase, J. Robertson, J. Phys. D Appl. Phys. 53, 284002 (2020). https://doi.org/10.1088/1361-6463/ab850b

    Article  CAS  Google Scholar 

  16. S. Havriliak, S. Negami, Polymer 8, 161 (1967). https://doi.org/10.1016/0032-3861(67)90021-3

    Article  CAS  Google Scholar 

  17. B.S. Lee, S.G. Bishop, Phase Change Mater. (2009). https://doi.org/10.1007/978-0-387-84874-7_9

    Article  Google Scholar 

  18. R. Diaz-Calleja, Macromolecules 33, 8924 (2000). https://doi.org/10.1021/ma991082i

    Article  CAS  Google Scholar 

  19. C. Chen, P. Jost, H. Volker, M. Kaminski, M. Wirtssohn, U. Engelmann, M. Wuttig, Phys. Rev. B 95, 094111 (2017). https://doi.org/10.1103/PhysRevB.95.094111

    Article  Google Scholar 

  20. P. Debye, Ann. Phys. 39, 789 (1912). https://doi.org/10.1002/andp.19123441404

    Article  CAS  Google Scholar 

  21. A.K. Jonsher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983).

    Google Scholar 

  22. Y. Zheng, M. Xia et al., Nano Res. 9, 3453 (2016). https://doi.org/10.1007/s12274-016-1221-8

    Article  CAS  Google Scholar 

  23. T.H. Lee, S.R. Elliott, Adv. Mater. 32, 2000340 (2020). https://doi.org/10.1002/adma.202000340

    Article  CAS  Google Scholar 

  24. F.C. Mocanu, K. Konstantinou, J. Mavračić, S.R. Elliott, Phys. Status Solidi RRL 15, 2000485 (2020). https://doi.org/10.1002/pssr.202000485

    Article  CAS  Google Scholar 

Download references

Funding

The reported study was performed within a Russia-Japan joint project funded by the Russian foundation for Basic Research (project number 20-52-50012) and the Japan Society for the Promotion of Science (project number JPJSBP120204815).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kononov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kononov, A.A., Castro, R.A., Saito, Y. et al. Dielectric relaxation in amorphous and crystalline Sb2Te3 thin films. J Mater Sci: Mater Electron 32, 14072–14078 (2021). https://doi.org/10.1007/s10854-021-05986-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05986-4

Navigation