Skip to main content

Advertisement

Log in

Evaluation of residual stress of c oriented AlN/Si (111) and its impact on mushroom-shaped piezoelectric resonator

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Aluminium nitride-based MEMS resonators are one of the interesting recent research topics for its tremendous potential in a wide variety of applications. This paper focuses on the detrimental effect of residual stress on the AlN-based MEMS resonator design for acoustic applications. The residual stress in the sputtered c-axis (< 001 >) preferred oriented AlN layers on Si (111) substrates are studied as a function of layer thickness. The films exhibited compressive residual stresses at different thickness values: − 1050 MPa (700 nm), − 500 MPa (900 nm), and − 230 MPa (1200 nm) with ± 25 MPa accuracy. A mushroom-shaped AlN-based piezoelectric MEMS resonator structure has been designed for the different AlN layer thicknesses. The effect of the residual stresses on the mode shapes, resonant frequencies, and quality factor (Q) of the resonator structures are studied. The resonant frequency of the structures are altered from 235 kHz, 280 kHz, and 344 kHz to 65 kHz, 75 kHz and 371 kHz due to the residual stress of − 1050 MPa (thickness: 700 nm), − 500 MPa (thickness: 900 nm) and − 230 MPa (thickness: 1200 nm), respectively. At no residual stress, the quality factors of the resonator structures are 248, 227, 241 corresponding to the 700 nm, 900 nm, and 1200-nm-thick AlN layers, respectively. The presence of the residual stress reduced the Q values from 248 (thickness: 700 nm), 227 (thickness: 900 nm), 241 (thickness: 1200 nm) to 28, 53, and 261, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study will be available on request from the corresponding author.

References

  1. M.Y. Chao, A. Ali, S. Ghosh, J. Lee, An aluminum nitride on silicon resonant MEMS accelerometer operating in ambient pressure, in IEEE 19th International Conference on Solid-State Sensors, Actuators, Microsystems (TRANSDUCERS) (2017), p. 607

  2. Y.Q. Fu, J.K. Luo, N.T. Nguyen, A.J. Walton, A.J. Flewitt, X.T. Zu, Y. Li, G. McHale, A. Matthews, E. Iborra, H. Du, W.I. Milne, Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications. Prog. Mater. Sci. 89, 31 (2017)

    CAS  Google Scholar 

  3. N. Jaber, A. Ramini, Q. Hennawi, M.I. Younis, Wideband MEMS resonator using multifrequency excitation. Sens. Actuator A 242, 140 (2016)

    CAS  Google Scholar 

  4. H. Lei, Q. Wen, F. Yu, D. Li, AlN film based piezoelectric large-aperture MEMS scanning micromirror integrated with angle sensors. J. Micromech. Microeng. 28, 115012 (2018)

    Google Scholar 

  5. X. Li, Y. Huang, Y. Du, Z. Li, F. Bao, J. Bao, Study of a 10 MHz MEMS oscillator with a TPoS resonator. Sens. Actuator A 258, 59 (2017)

    CAS  Google Scholar 

  6. H.P. Loebl, M. Klee, O. Wunnicke, R. Kiewitt, R. Dekker, E.V. Pelt, Piezoelectric AlN and PZT films for micro-electronic applications. IEEE Ultrason. Symp. 2, 1031 (1999)

    Google Scholar 

  7. M. Marzencki, Y. Ammar, S. Basrour, Integrated power harvesting system including a MEMS generator and a power management circuit. Sens. Actuators A 145–146, 363 (2008)

    Google Scholar 

  8. Y. Parmar, N. Gupta, V. Gond, S.S. Lamba, S.R.K. Vanjari, S. Dutta, K.K. Jain, D.K. Bhattacharya, Microsyst. Technol. 26(3), 701 (2020)

    CAS  Google Scholar 

  9. G. Pfusterschmied, J. Toledo, M. Kucera, W. Steindl, S. Zemann, V.R. Díez, M. Schneider, A. Bittner, J.L.S. Rojas, U. Schmid, Potential of piezoelectric MEMS resonators for grape must fermentation monitoring. Micromachines 8, 200 (2017)

    Google Scholar 

  10. G. Pfusterschmied, F. Patocka, C. Weinmann, M. Schneider, D. Platz, U. Schmid, Responsivity and sensitivity of piezoelectric MEMS resonators athigher order modes in liquids. Sens. Actuator A 295, 84 (2019)

    CAS  Google Scholar 

  11. S. Dutta, S.M. Imran, R. Pal, R.K. Bhan, Diffusion induced residual stress in comb-type microaccelerometer structure. J. Mater. Sci. 25(9), 3828 (2014)

    CAS  Google Scholar 

  12. S. Dutta, A. Panchal, M. Kumar, R. Pal, R.K. Bhan, Effect of residual stress on modal patterns of MEMS vibratory gyroscope. AIP Conf. Proc. 1724, 020103 (2016)

    Google Scholar 

  13. S. Dutta, P. Saxena, A. Panchal, R. Pal, K.K. Jain, D.K. Bhattacharya, Effect of vacuum packaging on bandwidth of push–pull type capacitive accelerometer structure. Microsyst. Technol. 24, 4855 (2018)

    CAS  Google Scholar 

  14. N. Gupta, S. Dutta, A. Panchal, I. Yadav, S. Kumar, Y. Parmar, S.R.K. Vanjari, K.K. Jain, D.K. Bhattacharya, Design and fabrication of SOI technology-based MEMS differential capacitive accelerometer structure. J. Mater. Sci. 30(16), 15705 (2019)

    CAS  Google Scholar 

  15. N. Gupta, A. Pandey, S.R.K. Vanjari, S. Dutta, Influence of residual stress on performance of AlN thin film based piezoelectric MEMS accelerometer structure. Microsyst. Technol. 25, 3959–3967 (2019). https://doi.org/10.1007/s00542-019-04334-1

    Article  CAS  Google Scholar 

  16. B. Kim, R.H. Olsson, K.E. Wojciechowski, AlN microresonator-based filters with multiple bandwidths at low intermediate frequencies. J. Microelectromech. Syst. 22, 949–961 (2013)

    Google Scholar 

  17. A.L. Gesing, F.D.P. Alves, S. Paul, J.A. Cordioli, On the design of a MEMS piezoelectric accelerometer coupled to the middle ear as an implantable sensor for hearing devices. Sci. Rep. 8, 3920 (2018)

    CAS  Google Scholar 

  18. M. Mehrpouya, H.C. Bidsorkhi, MEMS applications of NiTi based shape memory alloys: a review. Micro Nanosyst. 8(2), 79 (2016)

    CAS  Google Scholar 

  19. U. Sharma, M. Kumar, R. Sharma, T. Saha, K.K. Jain, S. Dutta, E.K. Sharma, Fabrication process induced changes in scattering parameters of meander type RFMEMS shunt switch. Microsyst. Technol. 23(12), 5561 (2017)

    CAS  Google Scholar 

  20. U. Sharma, S. Dutta, E.K. Sharma, Improved broadband (75–110 GHz) radio frequency characteristics of MEMS shunt switches on quartz substrate. Microsyst. Technol. 25(3), 977 (2019)

    CAS  Google Scholar 

  21. H.C. Nathanson, W.E. Newell, R.A. Wickstrom, J.R. Davis, The resonant gate transistor. IEEE Trans. ED 14(3), 117 (1967)

    CAS  Google Scholar 

  22. N. Alcheikh, S.A. Tella, M.I. Younis, An investigation into the mechanical behavior of multi-input and multi-output MEMS resonators. Sens. Actuators A 280, 309 (2018)

    CAS  Google Scholar 

  23. F.H. Bao, J.F. Bao, J.E.Y. Lee, L.L. Bao, M.A. Khana, X. Zhoua, Q.D. Wu, T. Zhanga, X.S. Zhang, Quality factor improvement of piezoelectric MEMS resonator by the conjunction of frame structure and phononic crystals. Sens. Actuators A 297, 111541 (2019)

    CAS  Google Scholar 

  24. F.H. Bao, Q.D. Wu, X. Zhou, T. Wua, X.Y. Li, J.F. Bao, High-Q multi-frequency ring-shaped piezoelectric MEMS resonators. Microelectronics 98, 104733 (2020)

    CAS  Google Scholar 

  25. S. Ilyas, M.I. Younis, Resonator-based M/NEMS logic devices: review of recent advances. Sens. Actuators A 302, 111821 (2020)

    CAS  Google Scholar 

  26. R.H. Olsson, K.E. Wojciechowski, M.S. Baker, M.R. Tuck, J.G. Fleming, Post-CMOS-compatible aluminum nitride resonant MEMS accelerometers. IEEE MEMS 18(3), 671 (2009)

    CAS  Google Scholar 

  27. N. Sepulveda, D. Aslam, J.P. Sullivan, Polycrystalline diamond MEMS resonator technology for sensor applications. Diam. Relat. Mater. 15, 398 (2006)

    CAS  Google Scholar 

  28. J. Toledo, V.R. Díez, M. Bertke, H.S. Wasisto, E. Peiner, J.L.S. Rojas, Piezoelectric MEMS resonators for cigarette particle detection. Micromachines 10, 145 (2019)

    Google Scholar 

  29. C. Zhao, M.H. Montaseri, G.S. Wood, S.H. Pu, A.A. Seshiad, M. Krafte, A review on coupled MEMS resonators for sensing applications utilizing mode localization. Sens. Actuators A 249, 93 (2016)

    CAS  Google Scholar 

  30. S.C. Ur, E.S. Kim, S.H. Yi, The Effects of residual stresses in the composite diaphragm on the performance of piezoelectric microspeakers. Electron Mater. Lett. 9, 119 (2013)

    CAS  Google Scholar 

  31. J.C. Yu, C.B. Lan, System modeling of microaccelerometer using piezoelectric thin films. Sens. Actuators A 88, 178 (2001)

    CAS  Google Scholar 

  32. H.G. Yu, L. Zou, K. Deng, R. Wolf, S. Tadigadapa, S.T. McKinstry, Lead zirconate titanate MEMS accelerometer using interdigitated electrodes. Sens. Actuators A 107, 26 (2003)

    CAS  Google Scholar 

  33. E. Iborra, J. Olivares, M. Clement, L. Vergara, A.S. Hervas, J. Sangrador, Piezoelectric properties and residual stress of sputtered AlN thin films for MEMS applications. Sens. Actuators A 115, 501 (2004)

    CAS  Google Scholar 

  34. J. Yang, M. Zhang, Y. He, Y. Su, G. Han, C. Si, J. Ning, F. Yang, X. Wang, A resonant z-axis aluminum nitride thin-film piezoelectric MEMS accelerometer. Micromachines 10, 589 (2019)

    Google Scholar 

  35. A. Pandey, R. Prakash, S. Dutta, S. Dalal, R. Raman, A.K. Kapoor, D. Kaur, Growth and evaluation of residual stress of AlN films on Si (100) wafers. Mater. Sci. Semicond. Process. 52, 16–23 (2016)

    CAS  Google Scholar 

  36. S. Pawar, K. Singh, S. Sharma, A. Pandey, S. Dutta, D. Kaur, Growth assessment and scrutinize dielectric reliability of c-axis oriented insulating AlN thin films in MIM structures for microelectronics applications. Mater. Chem. Phys. 219, 74 (2018)

    CAS  Google Scholar 

  37. A. Pandey, R. Prakash, S. Dutta, S. Dalal, A. Kumar, A.K. Kapoor, D. Kaur, Growth and morphological evolution of c-axis oriented AlN films on Si (100) substrates by DC sputtering technique. AIP Conf. Proc. 1953, 100028 (2018)

    Google Scholar 

  38. J.X. Zhang, J.X. Zhang, H. Cheng, Y.Z. Chen, A. Uddin, S. Yuan, S.J. Geng, S. Zhang, Growth of AlN films on Si (100) and Si (111) substrates by reactive magnetron sputtering. Surf. Coat. Technol. 198, 68–73 (2005)

    CAS  Google Scholar 

  39. C. Caliendo, P. Imperaton, E. Cianci, Structural, morphological and acoustic properties of AlN thick films sputtered on Si(001) and Si(111) substrates at low temperature. Thin Solid Films 441, 32–37 (2003)

    CAS  Google Scholar 

  40. H. Altuntas, C.O. Akgun, I. Donmez, N. Biyikli, Current transport mechanisms in plasma-enhanced atomic layer deposited AlN thin films. J. Appl. Phys. 117, 155101 (2015)

    Google Scholar 

  41. Y. Feng, H. Wei, S. Yang, Z. Chen, L. Wang, S. Kong, G. Zhao, X. Liu, Competitive growth mechanisms of AlN on Si (111) by MOVPE. Sci. Rep. 4, 06416 (2014)

    CAS  Google Scholar 

  42. S. Tanaka, R.S. Kern, J. Bentley, R.F. Davis, Defect formation during hetero-epitaxial growth of aluminum nitride thin films on 6h-silicon carbide by gas-source molecular beam epitaxy. Jpn. J. Appl. Phys. 35, 1641 (1996)

    CAS  Google Scholar 

  43. K. Antonova, L. Duta, A. Szekeres, G.E. Stan, I.N. Mihailescu, M. Gartner, Influence of laser pulse frequency on the microstructure of aluminum nitride thin films synthesized by pulsed laser deposition. Appl. Surf. Sci. 394, 197 (2017)

    CAS  Google Scholar 

  44. R.E. Sah, L. Kirste, M. Baeumler, P. Hiesinger, V. Cimalla, V. Lebedev, H. Baumann, H.E. Zschau, Residual stress stability in fiber textured stoichiometric AlN film grown using rf magnetron sputtering. J. Vac. Sci. Technol. A 28, 394 (2010)

    CAS  Google Scholar 

  45. A. Pandey, S. Dutta, R. Prakash, R. Raman, A.K. Kapoor, D. Kaur, Growth and comparison of residual stress of AlN films on silicon (100), (110) and (111) substrates. J. Electron. Mater. 47, 1405–1413 (2018)

    CAS  Google Scholar 

  46. Y. Ye, Z. Yi, M. Qin, Q. Huang, DRIE trenches and full-bridges design for sensitivity improvement of MEMS silicon thermal wind sensor, in IEEE 30th IntConf MEMS (2017), p. 985

  47. C.H. Ma, J.H. Huang, H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction. Thin Solid Films 418, 73–78 (2002)

    CAS  Google Scholar 

  48. K. Kim, W.R.L. Lambrecht, B. Segall, Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN. Phys. Rev. B 53, 16310 (1996)

    CAS  Google Scholar 

  49. R. Ruh, A. Zangvil, J. Barlowe, Elastic properties of SiC, AlN, and their solid-solution and particulate composites. Am. Ceram. Soc. Bull. 64, 1368–1373 (1985)

    CAS  Google Scholar 

  50. M. Bao, Analysis and Design Principles of MEMS Devices (Elsevier Science Publication, Amsterdam, 2005).

    Google Scholar 

  51. A.W. Leissa, The historical bases of the Rayleigh and Ritz methods. J. Sound Vib. 287(4–5), 961–978 (2005)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Seema Vinayak, Director, Solid State Physics Laboratory (DRDO) for her guidance and for the permission to publish this work. We would like to acknowledge Mr. Sandeep Dalal and Mr. Anand Kumar for the XRD and FESEM measurements. Help from other colleagues is also acknowledged.

Funding

There is not any founding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhilesh Pandey.

Ethics declarations

Conflict of interest

I assure that this manuscript has not been submitted elsewhere for publication and all authors have been informed. There is not any conflict of interest regarding this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, A., Dutta, S., Gupta, N. et al. Evaluation of residual stress of c oriented AlN/Si (111) and its impact on mushroom-shaped piezoelectric resonator. J Mater Sci: Mater Electron 32, 13499–13510 (2021). https://doi.org/10.1007/s10854-021-05927-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05927-1

Navigation