Skip to main content

Advertisement

Log in

Performances of flexible dye‐sensitized solar cells fabricated with binder‐free nanostructure TiO2

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Dye-sensitized solar cell (DSSC) is getting much attention in recent years due to its low-cost fabrication feature. DSSC mimics the natural photosynthesis process that converts solar energy into electricity. To be adopted in IoT devices, DSSC needs to be flexible and versatile. In this work, flexible DSSC was fabricated from binder-free TiO2 paste. The ratios of TiO2 powder to alcohol precursor were varied. The aim was to investigate the optimum amount of TiO2 powder to ethanol and the effect of different alcohol used as precursor. Hydrochloric acid was added in the TiO2 paste in order to improve the connectivity of the particles. The corresponding mechanical integrity of the as-prepared film was studied as well. From the result, the optimum conversion efficiency achieved in this work was 2.12% where the film had a ratio of TiO2 powder to ethanol of 25 wt%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012)

    Article  CAS  Google Scholar 

  2. A. Aslam, U. Mehmood, M.H. Arshad, A. Ishfaq, J. Zaheer, A.U.H. Khan, M. Sufyan, Dye-sensitized solar cells (DSSCs) as a potential photovoltaic technology for the self-powered internet of things (IoTs) applications. Sol. Energy 207, 874–892 (2020)

    Article  CAS  Google Scholar 

  3. D.K. Kumar, J. Kriz, N. Bernnett, B. Chen, H. Upadhayaya, K.R. Reddy, V. Sadhu, Functionalized metal oxide nanoparticles for efficient dye-sensitized solar cells (DSSCs): a review. Mater. Sci. Energy Technol. 3, 472–481 (2020)

    Google Scholar 

  4. K. Sharma, V. Sharma, S.S. Sharma, Dye-sensitized solar cells: fundamentals and current status. Nanoscale Res. Lett. 13, 2760–2766 (2018)

    Article  Google Scholar 

  5. K. Zeng, Z. Tong, L. Ma, W.-H. Zhu, W. Wu, Y. Xie, Molecular engineering strategies for fabricating efficient porphyrin-based dye-sensitized solar cells. Energy Environ. Sci. 13, 1617–1657 (2020)

    Article  Google Scholar 

  6. Y. Cao, Y. Saygili, A. Ummadisingu, J. Teuscher, J. Luo, N. Pellet, F. Giordano, S.M. Zakeerudding, J.-E. Moser, M. Freitag, A. Hagfeldt, M. Grätzel, 11% efficiency solid-state dye-sensitized solar cells with copper (II/I) hole transport materials. Nat. Commun. 8, 15390 (2017)

    Article  Google Scholar 

  7. Y. Ren, D. Sun, Y. Cao, H.N. Tsao, Y. Yuan, S.M. Zakeeruddin, P. Wang, M. Grätzel, A stable blue photosensitizer for color paletter of dye-sensitized solar cells reaching 12.6% efficiency. J. Am. Chem. Soc. 140, 2405–2408 (2018)

    Article  CAS  Google Scholar 

  8. S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.E. Curchod, N. Ashari-Astanim, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 6, 242–247 (2014)

    Article  CAS  Google Scholar 

  9. M.J. Yun, M.S.I. Cha, S.H. Seo, D.Y. Lee, Highly flexible dye-sensitized solar cells produced by sewing textile electrodes on cloth. Sci. Rep. 4, 5322 (2014)

    Article  CAS  Google Scholar 

  10. G. Yue, X. Liu, Y. Chen, J. Huo, H. Zheng, Improvement in the photoelectric conversion efficiency for the flexible fibrous dye-sensitized solar cells. Nanoscale Res. Lett. 13, 188 (2018)

    Article  Google Scholar 

  11. L. Zhang, A. Konno, Development of flexible dye-sensitized solar cell based on pre-dye zinc oxide nanoparticle. Int. J. Electrochem. Sci. 13, 344–352 (2018)

    Article  CAS  Google Scholar 

  12. H. Michaels, M. Rinderle, R. Freitag, I. Benesperi, T. Edvinsson, R. Socher, A. Gagliardi, M. Freitag, Dye-sensitized solar cells under ambient light powering machine learning: towards autonomous smart sensors for internet of things. Chem. Sci. 11, 2895–2906 (2020)

    Article  CAS  Google Scholar 

  13. H.C. Weerasinghe, G.V. Franks, J.D. Plessis, G.P. Simon, Y.-B. Cheng, Anomalous rheological behavior in chemically modified TiO2 colloidal pastes prepared for flexible dye-sensitized solar cells. J. Mater. Chem. 20, 9954–9961 (2010)

    Article  CAS  Google Scholar 

  14. H.C. Weerasinghe, P.M. Sirimanne, G.V. Franks, G.P. Simo, Cheng Low temperature chemically sintered nano-crystalline TiO2 electrodes for flexible dye-sensitized solar cells. J. Photochem. Photobiol. A 213, 30–36 (2010)

    Article  CAS  Google Scholar 

  15. B. Li, F. huang, J. Zhong, J. Xie, M. Wen, Y. Peng, Fabrication of flexible dye-sensitized solar cell modules using commercially available materials. Energy Technol. 430070, 536–542 (2016)

    Article  Google Scholar 

  16. D. Zhang, T. Yoshida, T. Oekermann, K. Furuta, H. Minoura, Room-temperature synthesis of porous nanoparticulate TiO2 films for flexible dye-sensitized solar cells. Adv. Funct. Mater. 16, 1228–1234 (2006)

    Article  CAS  Google Scholar 

  17. W.-H. Yen, C.-C. Hsieh, C.-Y. Hung, H.-W. Wang, M.-C. Tsui, Flexible TiO2 working electrode for dye-sensitized solar cells. J. Chin. Chem. Soc. 57, 1162–1166 (2010)

    Article  CAS  Google Scholar 

  18. L. Muliana, J. Hidayat, P.N. Anggraini, Performance analysis of flexible DSSC with binder addition. AIP Conf. Proc. 1725, 020050 (2016)

    Article  Google Scholar 

  19. W. Mekprasart, W. Jarernboon, W. Pecharapa, TiO2/CuPc hyvrid nanocomposites prepared by low-energy ball milling for dye-sensitized solar cell application. Mater. Sci. Eng. B 172, 231–236 (2010)

    Article  CAS  Google Scholar 

  20. M. Singh, C.-H. Chiang, K.M. Boopathi, C. Hanmandlu, G. Li, C.-G. Wu, H.-C. Lin, C.-W. Chu, A novel ball milling technique for room temperature processing of TiO2 nanoparticles employed as the electron transport layer in perovskite solar cells and modules. J. Mater. Chem. A 6, 7114–7122 (2018)

    Article  CAS  Google Scholar 

  21. H.H. Nguyen, G. Gyawali, T.H. Kim, S.B. Humam, S.W. Lee, Blue TiO2 polymorph: an efficient materials for dye-sensitized solar cells fabricated using a low-temperature sintering process. Prog. Nat. Sci. 28, 578–553 (2018)

    Google Scholar 

  22. N.-G. Park, K.M. Kim, M.G. Kang, K.S. Ryu, S.H. Chang, Y.-J. Shin, Chemical sintering of nanoparticles: a methodology for low-temperature fabrication of dye-sensitized TiO2 films. Adv. Mater. 17, 2349–2353 (2005)

    Article  CAS  Google Scholar 

  23. D. Zhang, J.A. Downing, F.J. Knorr, J.L. McHale, Room-temperature preparation of nanoscrystalline TiO2 films and the influence of surface properties on dye-sensitized solar energy conversion. J. Phys. Chem. B 110, 21890–21898 (2006)

    Article  CAS  Google Scholar 

  24. T. Miyasaka, M. Ikegami, Y. Kijitori, Photovoltaic performance of plastic dye-sensitized electrodes prepared by low-temperature binder-free coating of mesoscopic titania. J. Electrochem. Soc. 154, A455 (2007)

    Article  CAS  Google Scholar 

  25. T. Yamaguchi, N. Tobe, D. Matsumoto, H. Arakawa, Highly efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of TiO2 photoelectrodes. Chem. Commun. 45, 4767–4769 (2007)

    Article  Google Scholar 

  26. H.C. Weerasinghe, P.M. Sirimanne, G.P. Simon, Y. Cheng, Cold isostatic pressing technique for producing highly efficient flexible dye-sensitised solar cells on plastic substrates. Prog. Photovolt. 20, 321–332 (2012)

    Article  CAS  Google Scholar 

  27. J.H. Yune, I. Karatchevtseva, G. Triani, A study of TiO2 binder-free paste prepared for low temperature dye-sensitized solar cells. J. Mater. Res. 28, 488–496 (2012)

    Article  Google Scholar 

  28. D.K. Kumar, M.-H. Hsu, A. Ivaturi, B. Chen, N. Bennett, H.M. Upadhyaya, Optimizing room temperature binder free TiO2 paste for high efficiency flexible polymer dye sensitized solar cells. Flex. Print. Electron. 4, 015007 (2019)

    Article  CAS  Google Scholar 

  29. H.H. Foong, H. Ahmad, C.H. Ting, C.Y. Ng, C.Y.H.K. Jun, Reduced graphene oxide on the performance of solid-state dye-sensitized solar cell. IOP Conf. Ser. Earth Environ Sci. 268, 012119 (2019)

    Article  Google Scholar 

  30. C. Charbonneau, T. Tanner, M.L. Davies, T.M. Watson, D.A. Worsley, Effect of TiO2 photoanode porosity on dye diffusion kinetics and performance of standard dye-sensitized solar cells. J. Nanomater. (2016). https://doi.org/10.1155/2016/9324858

    Article  Google Scholar 

  31. X.-L. He, M. Liu, G.-J. Yang, B. Fang, C.-J. Li, Unexpected efficiency enhancement of flexible dye-sensitized solar cells by repeated outward bending. RSC Adv. 5, 85174–85178 (2015)

    Article  CAS  Google Scholar 

  32. M.N. Mustafa, Y. Sulaiman, Fully flexible dye-sensitized solar cells photoanode modified with titanium dioxide-graphene quantum dot light scattering layer. Sol. Energy 212, 332–338 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Universiti Tunku Abdul Rahman for the provision of research facilities and major chemical materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. K. Jun.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poh, S.C., Ahmad, H., Ting, C.H. et al. Performances of flexible dye‐sensitized solar cells fabricated with binder‐free nanostructure TiO2. J Mater Sci: Mater Electron 32, 12031–12041 (2021). https://doi.org/10.1007/s10854-021-05833-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05833-6

Navigation