Skip to main content
Log in

Dielectric phase transition and ferroelectric properties of neodymium-doped BaBi4Ti4O15 layered ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The dielectric and ferroelectric properties of Ba1−(3/2)xNdxBi4Ti4O15 (BNBT) ceramics prepared by using the solid-state reaction route have been studied. X-ray diffraction study revealed that all the samples are in the orthorhombic symmetry with space group A21am. The dielectric study as a function of temperature demonstrated a ferroelectric to paraelectric transition is of diffuse type. The transition temperature (Tc) was found to be increased from 420 °C (x = 0) for BNBT to 500 °C (x = 0.40) at 500 MHz, thus broadening the utilization temperature range of the ceramics. Sample x = 0.40 with the lowest TKε value, indicating the best dielectric temperature stability in all samples. The very high oxygen vacancy of the sample x = 0.40 partially contributes to its higher Tc. However, x = 0.10 sample shows the lowest tan δ at 300 °C, which shows the lowest electrical conductivity in all the samples. The effect of Nd additives on the degree of diffuseness of the dielectric constant curves of BNBT was discussed by using modified Curie–Weiss law. The ferroelectric nature of the samples has been confirmed from the measurement of the hysteresis loop at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Yes.

References

  1. B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, W. Jo, Nature 401, 682 (1999). https://doi.org/10.1038/44352

    Article  CAS  Google Scholar 

  2. E.C. Subbarao, Integr. Ferroelectr. 12, 33 (1996). https://doi.org/10.1080/10584589608225746

    Article  CAS  Google Scholar 

  3. R.E. Newnham, R.W. Wolfe, J.F. Dorrian, Mater. Res. Bull. 6, 1029 (1971). https://doi.org/10.1016/0025-5408(71)90082-1

    Article  CAS  Google Scholar 

  4. A. Khokhar, M.L.V. Mahesh, A.R. James, P.K. Goyal, K. Sreenivas, J. Alloys Compd. 581, 150 (2013). https://doi.org/10.1016/j.jallcom.2013.07.040

    Article  CAS  Google Scholar 

  5. A. Khokhar, P.K. Goyal, O.P. Thakur, K. Sreenivas, Ceram. Int. 41, 4189 (2015). https://doi.org/10.1016/j.ceramint.2014.12.103

    Article  CAS  Google Scholar 

  6. A. Khokhar, P.K. Goyal, O.P. Thakur, A.K. Shukla, K. Sreenivas, Mater. Chem. Phys. 152, 13 (2015). https://doi.org/10.1016/j.matchemphys.2014.11.074

    Article  CAS  Google Scholar 

  7. A. Chakrabarti, J. Bera, J. Alloys Compd. 505, 668 (2010). https://doi.org/10.1016/j.jallcom.2010.06.105

    Article  CAS  Google Scholar 

  8. J.D. Bobić, M.M. Vijatović Petrović, J. Banys, B.D. Stojanović, Mater. Res. Bull. 47, 1874 (2012). https://doi.org/10.1016/j.materresbull.2012.04.069

    Article  CAS  Google Scholar 

  9. C.L. Diao, J.B. Xu, H.W. Zheng, L. Fang, Y.Z. Gu, W.F. Zhang, Ceram. Int. 39, 6991 (2013). https://doi.org/10.1016/j.ceramint.2013.02.036

    Article  CAS  Google Scholar 

  10. P. Fang, P. Liu, Z. Xi, Phys. B Condens. Matter 468–469, 34 (2015). https://doi.org/10.1016/j.physb.2015.03.033

    Article  CAS  Google Scholar 

  11. P.M.V. Almeida, C.B. Gozzo, E.H.N.S. Thaines et al., Mater. Chem. Phys. 205, 72 (2018). https://doi.org/10.1016/j.matchemphys.2017.10.069

    Article  CAS  Google Scholar 

  12. S. Kumar, K.B.R. Varma, J. Phys. D Appl. Phys. (2009). https://doi.org/10.1088/0022-3727/42/7/075405

    Article  Google Scholar 

  13. D. Peng, H. Zou, C. Xu, X. Wang, X. Yao, J. Alloys Compd. 552, 463 (2013). https://doi.org/10.1016/j.jallcom.2012.10.194

    Article  CAS  Google Scholar 

  14. P. Fang, H. Fan, J. Li, L. Chen, F. Liang, J. Alloys Compd. 497, 416 (2010). https://doi.org/10.1016/j.jallcom.2010.03.092

    Article  CAS  Google Scholar 

  15. C.W. Ahn, H.J. Lee, S.H. Kang et al., J. Electroceram. 21, 847 (2007). https://doi.org/10.1007/s10832-007-9308-y

    Article  CAS  Google Scholar 

  16. B.J. Kennedy, Y. Kubota, B.A. Hunter, A. Ismunandar, K. Kato, Solid State Commun. 126, 653 (2003). https://doi.org/10.1016/s0038-1098(03)00332-6

    Article  CAS  Google Scholar 

  17. T. Badapanda, R. Harichandan, T. Bheesma Kumar et al., J. Mater. Sci. Mater. Electron. 27, 7211 (2016). https://doi.org/10.1007/s10854-016-4686-z

    Article  CAS  Google Scholar 

  18. J.A. Horn, S.C. Zhang, U. Selvaraj, G.L. Messing, S. Trolier-McKinstry, J. Am. Ceram. Soc. 82, 921 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb01854.x

    Article  CAS  Google Scholar 

  19. X. Chou, J. Zhai, H. Jiang, X. Yao, J. Appl. Phys. (2007). https://doi.org/10.1063/1.2799081

    Article  Google Scholar 

  20. M. Reddyprakash, S.K. Rout, A. Satapathy, T.P. Sinha, S.M. Sariful, Ceram. Int. 42, 8798 (2016). https://doi.org/10.1016/j.ceramint.2016.02.122

    Article  CAS  Google Scholar 

  21. S.K. Rout, E. Sinha, A. Hussian et al., J. Appl. Phys. (2009). https://doi.org/10.1063/1.3068344

    Article  Google Scholar 

  22. P. Fang, H. Fan, Z. Xi, W. Chen, Solid State Commun. 152, 979 (2012). https://doi.org/10.1016/j.ssc.2012.03.007

    Article  CAS  Google Scholar 

  23. J.D. Bobić, M.M. Vijatović Petrović, J. Banys, B.D. Stojanović, Ceram. Int. 39, 8049 (2013). https://doi.org/10.1016/j.ceramint.2013.03.075

    Article  CAS  Google Scholar 

  24. K. Uchino, S. Nomura, Ferroelectrics 44, 55 (1982). https://doi.org/10.1080/00150198208260644

    Article  CAS  Google Scholar 

  25. C.L. Diao, H.W. Zheng, Y.Z. Gu, W.F. Zhang, L. Fang, Ceram. Int. 40, 5765 (2014). https://doi.org/10.1016/j.ceramint.2013.11.015

    Article  CAS  Google Scholar 

  26. Y. Chen, H. Zhou, S. Wang, Q. Chen, Q. Wang, J. Zhu, J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2020.155500

    Article  Google Scholar 

  27. W. Chaisan, R. Yimnirun, S. Ananta, D.P. Cann, Mater. Sci. Eng. B 132, 300 (2006). https://doi.org/10.1016/j.mseb.2006.04.033

    Article  CAS  Google Scholar 

  28. Y. Chen, D. Liang, Q. Wang, J. Zhu, J. Appl. Phys. (2014). https://doi.org/10.1063/1.4893366

    Article  Google Scholar 

  29. K.R. Kendall, C. Navas, J.K. Thomas, H.C. zur Loye, Chem. Mater. 8, 642 (1996). https://doi.org/10.1021/cm9503083

    Article  CAS  Google Scholar 

  30. W.L. Liu, H.R. Xia, H. Han, X.Q. Wang, J. Crystal Growth 269, 499 (2004). https://doi.org/10.1016/j.jcrysgro.2004.05.089

    Article  CAS  Google Scholar 

  31. J. Zhai, X. Yao, J. Shen, L. Zhang, H. Chen, J. Phys. D Appl. Phys. 37, 748 (2004). https://doi.org/10.1088/0022-3727/37/5/016

    Article  CAS  Google Scholar 

  32. W. Cai, C. Fu, J. Gao, X. Deng, G. Chen, Z. Lin, Integr. Ferroelectr. 140, 92 (2012). https://doi.org/10.1080/10584587.2012.741466

    Article  CAS  Google Scholar 

  33. S. Kojima, R. Imaizumi, S. Hamazaki, M. Takashige, J. Mol. Struct. 348, 37 (1995). https://doi.org/10.1016/0022-2860(95)08583-H

    Article  CAS  Google Scholar 

  34. M. Ganguly, S.K. Rout, T.P. Sinha et al., J. Alloys Compd. 579, 473 (2013). https://doi.org/10.1016/j.jallcom.2013.06.104

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank the University Department of Physics, Dr. Shyama Prasad Mukherjee University, Ranchi, for providing the necessary infrastructure to carry out our research.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Sharma.

Ethics declarations

Conflict of interest

All the authors declare that they have no known competing interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, T., Sharma, J.P., Sonu, B.K. et al. Dielectric phase transition and ferroelectric properties of neodymium-doped BaBi4Ti4O15 layered ceramics. J Mater Sci: Mater Electron 32, 11969–11977 (2021). https://doi.org/10.1007/s10854-021-05826-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05826-5

Navigation