Skip to main content

Advertisement

Log in

Structural, electrical, and optical properties of ITO thin films and their influence on performance of CdS/CdTe thin-film solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ITO was prepared by mixing gradient In2O3 and SnO2 powders using solid-phase reaction manner. Using electron beam gun tool, ITO films with varied thicknesses were fabricated. The structures and electrical and optical parameters of the prepared films were studied. XRD patterns were used to establish the micro-structural parameters (lattice strain and crystallite size). The SEM shows improvement of grain size with the increase of the film thickness. The electrical parameters of ITO films were measured by means of the standard four-point probe method. It was found that when the film thickness increases from 75 to 375 nm, the resistivity decreases to lower value of 1.65 × 10–4 Ω cm and slightly increases to 1.93 × 10–4 Ω cm at thickness of 375 nm. The ITO films with lower electrical properties are appropriate for high-efficiency CdTe solar cells. In terms of spectral ellipsometry, three optical layer models (adhesive layer of the substrate/B-spline layer of ITO film/surface roughness layer) were applied to estimate the film thickness with high accuracy. The absorption coefficient and energy gap were calculated from the transmission and reflection spectra in the strong absorption region. As the film thickness increases, the optical energy gap was found to increase from 3.56 to 3.69 eV. In terms of Hall effect measurements, both carrier concentration and hall mobility were determined. In addition, influences of ITO layers with various thicknesses on the performance of CdS/CdTe solar cells were checked. When the ITO window layer thickness is 325 nm, Jsc = 17 mA/cm2, Voc = 0.82 V, and FF = 57.4%, the calculated highest power conversion efficiency (PCE) is 8.6%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H.R. Fallah, M. Ghasemi, A. Hassanzadeh, Physica E 39, 69 (2007)

    Article  CAS  Google Scholar 

  2. M.J. Alam, D.C. Cameron, Thin Solid Films 377, 455 (2000)

    Article  Google Scholar 

  3. H. Kostlin, R. Jost, W. Lems, Optical and electrical properties of doped In2O3 films. Phys. Status Solidi A 29, 87 (1975)

    Article  Google Scholar 

  4. J.H. Park, C. Buurma, S. Sivananthan, R. Kodama, W. Gao, T.A. Gessert, Appl. Surf. Sci. 307, 388–392 (2014)

    Article  CAS  Google Scholar 

  5. K.-S. Tseng, Y.-L. Lo, Appl. Surf. Sci. 285P, 157–166 (2013)

    Article  CAS  Google Scholar 

  6. K.C. Heo, Y.K. Sohn, J.S. Gwag, Ceram. Int. 41, 617–621 (2015)

    Article  CAS  Google Scholar 

  7. Y.S. Jung, D.W. Lee, D.Y. Jeon, Appl. Surf. Sci. 221, 136–142 (2004)

    Article  CAS  Google Scholar 

  8. A. Klo Eppel, W. Kriegseis, B.K. Meyer, A. Scharmann, C. Daube, J. Stollenwerk, J. Trube, Thin Solid Films 365, 139–146 (2000)

    Article  Google Scholar 

  9. Y. Wang, J. Liu, X. Wu, B. Yang, Appl. Surf. Sci. 308, 341–346 (2014)

    Article  CAS  Google Scholar 

  10. M.T. Kesim, C. Durucan, Thin Solid Films 545, 56–63 (2013)

    Article  CAS  Google Scholar 

  11. L. Korosi, S. Korosi, I. Dekany, Thin Solid Films 519, 3113–3118 (2011)

    Article  CAS  Google Scholar 

  12. K.-Y. Pan, L.-D. Lin, L.-W. Chang, H.C. Shih, Appl. Surf. Sci. 273, 12–18 (2013)

    Article  CAS  Google Scholar 

  13. J.B. Choi, J.H. Kim, K.A. Jeon, S.Y. Lee, Mater. Sci. Eng. B 102, 376–379 (2003)

    Article  CAS  Google Scholar 

  14. J.M. Dekkers, G. Rijnders, D.H.A. Blank, Appl. Phys. Lett. 88, 151908 (2006)

    Article  CAS  Google Scholar 

  15. Y.C. Park, Y.S. Kim, H.K. Seo, S.G. Ansari, H.S. Shin, Surf. Coat. Technol. 161, 62–69 (2002)

    Article  CAS  Google Scholar 

  16. Y.S. Kim, Y.C. Park, S.G. Ansari, B.S. Lee, H.S. Shin, Thin Solid Films 426, 124–131 (2003)

    Article  CAS  Google Scholar 

  17. V. Brinzari, I. Damaskin, L. Trakhtenberg, B.K. Cho, G. Korotcenkov, Thin Solid Films 552, 225–231 (2014)

    Article  CAS  Google Scholar 

  18. P.K. Manoj, B. Joseph, V.K. Vaidyan, D. Sumangala Devi Amma, Ceram. Int. 33, 273–278 (2007)

    Article  CAS  Google Scholar 

  19. H. El Rhaleb, E. Benamar, M. Rami, J.P. Roger, A. Hakam, A. Ennaoui, Appl. Surf. Sci. 201, 138–145 (2002)

    Article  Google Scholar 

  20. E. Benamar, M. Rami, C. Messaoudi, D. Sayah, A. Ennaoui, Sol. Energy Mater. Sol. Cells 56, 125–139 (1999)

    Article  CAS  Google Scholar 

  21. A.R. Babar, S.S. Shinde, A.V. Moholkar, C.H. Bhosale, J.H. Kim, K.Y. Rajpure, J. Alloys Compd. 509, 3108–3115 (2011)

    Article  CAS  Google Scholar 

  22. K. Ravichandran, K. Thirumurugan, J. Mater. Sci. Technol. 30(2), 97–102 (2014)

    Article  CAS  Google Scholar 

  23. S. Marikkannu, M. Kashif, N. Sethupathy, V.S. Vidhya, S. Piraman, A. Ayeshamariam, M. Bououdina, N.M. Ahmed, M. Jayachandran, Mater. Sci. Semicond. Process. 27, 562 (2014)

    Article  CAS  Google Scholar 

  24. M. Nisha, S. Anusha, A. Antony, R. Manoj, M.K. Jayaraj, Appl. Surf. Sci. 252, 1430 (2005)

    Article  CAS  Google Scholar 

  25. V.S. Reddy, K. Das, A. Dhar, S.K. Ray, Semicond. Sci. Technol. 21, 1747 (2006)

    Article  CAS  Google Scholar 

  26. N. El-Kabnay, E.R. Shaaban, N. Afify, A.M. Abou-Sehly, Physica B 403, 31 (2008)

    Article  CAS  Google Scholar 

  27. W. Wohlmuth, I. Adesida, Thin Solid Film 479, 223 (2005)

    Article  CAS  Google Scholar 

  28. P.-S. Shen, C.-M. Tseng, T.-C.-K. Shih, M.-H. Li, P. Chen, Sol. Energy 120, 345–356 (2015)

    Article  CAS  Google Scholar 

  29. H.M. Rietveld, J. Appl. Cryst. 2, 65–71 (1969)

    Article  CAS  Google Scholar 

  30. E.R. Shaaban, I. Kansal, S. Mohamed, J.M. Ferreira, Physica B Condens. Matter 404, 3571 (2009)

    Article  CAS  Google Scholar 

  31. J. Zhang, L. Feng, W. Cai, J. Zheng, Y. Cai, B. Li, L. Wu, Y. Shao, Thin Solid Films 414, 113–118 (2002)

    Article  CAS  Google Scholar 

  32. A. Goktas, F. Aslan, I.H. Mutlu, J. Mater. Sci. Mater. Electron. 23, 605–611 (2012)

    Article  CAS  Google Scholar 

  33. R.C. Jaeger, Introduction to Microelectronic Fabrication, 2nd edn. (Prentice Hall, New Jersey, 2002), pp. 81–88. ISBN 0-201-44494-1

  34. E.R. Shaaban, J. Alloys Compd. 563, 274 (2013)

    Article  CAS  Google Scholar 

  35. D. Pereda Cubian, M. Haddad, R. Andre, R. Frey, G. Roosen, J. Arce, C. Diego, L. Flytzains, Phys. Rev. B 67, 45308 (2003)

    Article  CAS  Google Scholar 

  36. M. Emam-Ismail, E.R. Shaaban, M. El-Hagary, I. Shaltout, Philos. Mag. 90, 3499 (2010)

    Article  CAS  Google Scholar 

  37. M. Emam-Ismail, M. El-Hagary, E.R. Shaaban, A.M. Al-Hedeib, J. Alloys Compd. 532, 16 (2012)

    Article  CAS  Google Scholar 

  38. M. Mohamed, A.M. Abdelraheem, M.I. AbdElrahman, N.M.A. Hadia, E.R. Shaaban, Appl. Phys. A 125, 483 (2019)

    Article  CAS  Google Scholar 

  39. M. Mohamed, E. Shaaban, M.N. Abd-el Salam, A. Abdel-Latief, S.A. Mahmoud, M. Abdel-Rahim, Optik 178, 1302–1312 (2019)

    Article  CAS  Google Scholar 

  40. C. Huang, H. Weng, Y. Jiang, H. Ueng, Vacuum 83, 313 (2009)

    Article  CAS  Google Scholar 

  41. E. Bacaksiz, S. Aksu, N. Ozer, M. Tomakin, A. Ozcelik, Appl. Surf. Sci. 256, 1566 (2009)

    Article  CAS  Google Scholar 

  42. J. Tauc, R. Grigorovici, A. Vancu, physica status solidi (b) 15(2), 627–637 (1966)

    Article  CAS  Google Scholar 

  43. T. Mahalingam, V. Dhanasekaran, R. Chandramohan, J.K. Rhee, J. Mater. Sci. 47, 1950 (2012)

    Article  CAS  Google Scholar 

  44. J.H. Kim, B.D. Ahn, C.H. Lee, K.A. Jeon, H.S. Kang, G.H. Kim, S.Y. Lee, Thin Solid Films 515, 3580 (2007)

    Article  CAS  Google Scholar 

  45. A. Elikkottil, M. Tahersima, S. Gu, V.J. Sorger, B. Pesala, A spectrally-tunable dielectric grating based metasurface for broadband planar light concentrator. Nat. Sci. Rep. 9, 11723 (2019)

    Article  CAS  Google Scholar 

  46. S. Gupta, M.H. Tahersima, V.J. Sorger, B. Pesala, Silicon nitride grating based planar spectral splitting concentrator for NIR light harvesting. Opt. Express 28, 15 (2020)

    Google Scholar 

  47. M.H. Tahersima, M. Danang Birowosuto, Z. Ma, W.C. Coley, M. Valentin, I. Lu, K. Liu, Y. Zhou, A. Martinez et al., Testbeds for transition metal dichalcogenide photonics: efficacy of light emission enhancement in monomer vs dimer nanoscale antennas. ACS Photonics 4, 1713–1721 (2017)

    Article  CAS  Google Scholar 

  48. M. Tahersima, V.J. Sorger, Enhanced photon absorption in spiral nanostructured solar cells using layered 2-D materials. Nanotechnology 26, 344005 (2015)

    Article  CAS  Google Scholar 

  49. R. Maiti, C. Patil, T. Xie, J. Ghasemi, M.A.S.R. Saadi, R. Amin, M. Miscuglio, D. Van Thourhout, S.D. Solares, T. Low, R. Agarwal, S. Bank, V.J. Sorger, Strain-engineered integrated MoTe2 photodetector for high responsivity at 1.55 μm. Nat. Photonics 14(9), 578–584 (2020)

    Article  CAS  Google Scholar 

  50. V.J. Sorger, R. Maiti, Roadmap for gain-bandwidth-product enhanced photodetectors. Opt. Mater. Express 10(9), 2192–2200 (2020)

    Article  CAS  Google Scholar 

  51. Y. Gui, M. Miscuglio, Z. Ma, M.T. Tahersima, V.J. Sorger, Towards integrated metatronics: a holistic approach on precise optical and electrical properties of Indium Tin Oxide. Nat. Sci. Rep. 9(1), 1–10 (2019)

    Google Scholar 

  52. Z. Ma, Z. Li, K. Liu, C. Ye, V.J. Sorger, Indium-tin-oxide for high-performance electro-optic modulation. Nanophotonics 4(1), 198–213 (2015)

    Article  CAS  Google Scholar 

  53. R. Amin, J.B. Khurgin, V.J. Sorger, Waveguide-based electro-absorption modulator performance: comparative analysis. Opt. Express 26(11), 15445–15470 (2018)

    Article  CAS  Google Scholar 

  54. V.J. Sorger, R. Amin, J.B. Khurgin, Z. Ma, S. Khan, Scaling vectors for Atto-Joule per bit modulators. J. Opt. 20, 014012 (2018)

    Article  CAS  Google Scholar 

  55. C. Ye, S. Khan, Z.R. Li, E. Simsek, V.J. Sorger, λ-Size ITO and graphene-based electro-optic modulators on SOI. IEEE J. Sel. Top. Quantum Electron. 4, 20 (2014)

    Google Scholar 

  56. S.K. Pickus, S. Khan, C. Ye, Z. Li, V.J. Sorger, Silicon plasmon modulators: breaking photonic limits. IEEE Photonics Soc. 27, 6 (2013)

    Google Scholar 

  57. V.J. Sorger, D. Kimura, R.-M. Ma, X. Zhang, Ultra-compact silicon nanophotonic modulator with broadband response. Nanophotonics 1(1), 17–22 (2012)

    Article  CAS  Google Scholar 

  58. C. Huang, S. Pickus, R. Lamond, Z. Li et al., A sub-λ size modulator beyond the efficiency-loss limit. IEEE Photonics J. 5, 4 (2013)

    Google Scholar 

  59. M.H. Tahersima, Z. Ma, Y. Gui, S. Sun, H. Wang, R. Amin, H. Dalir, R. Chen, M. Miscuglio, V.J. Sorger, Coupling-enhanced dual ITO layer electro-absorption modulator in silicon photonics. Nanophotonics 8, 9 (2019)

    Article  CAS  Google Scholar 

  60. R. Amin, R. Maiti, C. Carfano, Z. Ma, M.H. Tahersima, Y. Lilach, D. Ratnayake, H. Dalir, V.J. Sorger, 0.52 V-mm ITO-based Mach-Zehnder modulator in silicon photonics. APL Photonics 3(12), 126104 (2018)

    Article  CAS  Google Scholar 

  61. R. Amin, R. Maiti, Y. Gui, C. Suer, M. Miscuglio, E. Heidari, R.T. Chen, H. Dalir et al., Broadband sub-λ GHz ITO plasmonic Mach-Zehnder modulator on silicon photonics. Optica 7, 3 (2020)

    Article  Google Scholar 

  62. R. Amin, R. Maiti, Y. Gui, C. Suer, M. Miscuglio, E. Heidari, J.B. Khurgin, R.T. Chen, H. Dalir, et al., Heterogeneously integrated ITO plasmonic Mach-Zehnder interferometric modulator on SOI. arXiv: 12007:5457

  63. C. Ye, K. Liu, R. Soref et al., A compact plasmonic MOS-based 2x2 electro-optic switch. Nanophotonics 4(3), 261–268 (2015)

    Article  CAS  Google Scholar 

  64. R. Amin, J. George, S. Sun, T. Ferreira de Lima, A.N. Tait, J. Khurgin et al., ITO-based electro-absorption modulator for photonic neural activation function. APL Mater. 7, 081112 (2019)

    Article  CAS  Google Scholar 

  65. M. Miscuglio, X. Ma, T. El-Ghazawi, T. Itoh, A. Alu, et al., Analog computing with metatronic circuits. arXiv preprint: 2007.05380

  66. R. Amin, R. Maiti, J.K. George, X. Ma, Z. Ma, H. Dalir et al., A lateral MOS-capacitor enabled ITO Mach-Zehnder modulator for beam steering. J. Lightwave Technol. 38(2), 282–290 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under Grant No. (RG-38-130-41). The authors, therefore, acknowledge DSR for technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Essam R. Shaaban.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, M., Bakry, A., Shaaban, E.R. et al. Structural, electrical, and optical properties of ITO thin films and their influence on performance of CdS/CdTe thin-film solar cells. J Mater Sci: Mater Electron 32, 11107–11118 (2021). https://doi.org/10.1007/s10854-021-05777-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05777-x

Navigation