Skip to main content
Log in

Influence of γ-ray exposure and dose dependent characteristics of (n)PbS–(p)Si hetero-structure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

An (n)PbS–(p)Si hetero-structure was developed by preparing the lead sulfide (PbS) nanostructure thin films deposited on p-type Si wafer using the successive ionic layer adoption and reaction (SILAR) method. To investigate the radiation detection capability of (n)PbS–(p)Si hetero-structure. For this purpose, nanostructure, photoluminescence, optical bandgap and I–V characteristic have been examined with various γ-ray dose 0, 25, 50 and 75 kGy. X-ray diffraction of as deposited PbS comparing to the irradiated samples suggested that the crystalline is improved with the γ-ray up to 50 kGy dose. The morphology studies showed that the average sizes increased from 55 to 105 nm with increasing the incident γ-ray dose level and decreased with further increase of dose. Energy dispersive X-ray (EDX) analysis confirmed the elemental composition of the as deposited PbS thin films. The reflectance of the (n)PbS–(p)Si hetero-structure in the ultraviolent–visible–near infrared reflectance (UV–Vis–NIR) region reduced about 40% compared to as deposited sample. The band edge shifted to longer wavelengths with increasing dose level to 50 kGy, and the reverse trend is observed at 75 kGy dose. Photoluminescence (PL) spectra revealed that the (n)PbS–(p)Si hetero-structure received the lowest recombination rate at 50 kGy. The rectifying current–voltage (I–V) characteristics revealed impact of the γ-ray irradiation dose on the hetero-structure electrical parameters. The rectifying ratio and turn-on voltage reduced from 22.3 to 7.4 at 5 V, and 1.25–0.5 V with γ-ray irradiation, respectively. All ideality factors of as deposited and irradiated (n)PbS–(p)Si hetero-structure are greater than 4. The barrier height, series resistance exhibited minimum values (0.49 eV, 1.47 kΩ) and the largest saturation current 1.69 × 10–4 A, at 50 kGy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Mohil, G.A. Kumar, J. Nano Electron. 2, 2018 (2013)

    Google Scholar 

  2. L.I. Ivanov, Y.M. Platov, Cambridge International Science Publishing, UK (2004)

  3. E. Colby, G. Lum, T. Plettner, J. Spencer, I.E.E.E.T. Nucl, Science 49, 2857 (2002)

    CAS  Google Scholar 

  4. K. Arshak, O. Korostynska, Sens. Rev. 26, 70 (2006)

    Article  Google Scholar 

  5. S. Kaya, E. Yilmaz, Influences of Co-60 gamma-ray irradiation on electrical characteristics of Al2O3 MOS capacitors. J. Radioanal. Nucl. Chem. 302, 425–431 (2014)

    Article  CAS  Google Scholar 

  6. S. Kaya, E. Yilmaz, A. Aktag, J. Seidel, Characterization of interface defects in BiFeO3 metal-oxide-semiconductor capacitors deposited by radio frequency magnetron sputtering. J. Mater. Sci.-Mater. Electron. 26, 5987–5993 (2015)

    Article  CAS  Google Scholar 

  7. S. Kaya, E. Yilmaz, A. Kahraman, H. Karacali, Frequency dependent gamma-ray irradiation response of Sm2O3 MOS capacitors. Nucl. Instrum. Method B 358, 188–193 (2015)

    Article  CAS  Google Scholar 

  8. R. Lok, S. Kaya, H. Karacali, E. Yilmaz, A detailed study on the frequency-dependent electrical characteristics of Al/HfSiO4/p-Si MOS capacitors. J. Mater. Sci. Mater. Electron. 27, 13154–13160 (2016)

    Article  CAS  Google Scholar 

  9. R. Lok, S. Kaya, E. Yilmaz, Thermal phase separation of ZrSiO4 thin films and frequency-dependent electrical characteristics of the Al/ZrSiO4/p-Si/Al MOS capacitors. Semicond Sci. Tech. 33, 055007 (2018)

    Article  Google Scholar 

  10. S.D. Del Sordo, L. Abbene, E. Caroli, A.M. Mancini, A. Zappettini, P. Ubertini, Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors 9, 3491–3526 (2009)

    Article  Google Scholar 

  11. J. Perkins, H. Krawczynski, P. Dowkontt, Characterizing Imarad CZT detectors With time resolved anode and cathode, Proceedings of the 13th International I.E.E.E. Workshop on Room-Temperature Semiconductor X- and Gamma-Ray Detectors (2003)

  12. M. Urdaneta, P. Stepanov, I, Weinberg, Irina Pala2 and Stephanie Brock2Quantum Dot Composite Radiation Detectors 1Weinberg Medical Physics LLC 2Wayne State University USA (2021)

  13. S. Chakrabartty, A. Mondal, M.B. Sarkar, B. Choudhuri, A.K. Saha, A. Bhattacharyya, TiO2 nanoparticles arrays ultraviolet-A detector with AU schottky contact. IEEE Photon Technol. Lett. 26, 1065–1068 (2014)

    Article  CAS  Google Scholar 

  14. A. Hazra, P.P. Chattopadhyay, P. Bhattacharyya, Hybrid fabrication of highly rectifying p-n homojunction based on nanostructured TiO2. IEEE Electron. Device Lett. 36, 505–507 (2015)

    Article  CAS  Google Scholar 

  15. M. Zhang, D. Zhang, F. Jing, G. Liu, K. Lv, J. Zhou, S. Ruan, Fast decay time and low dark current mechanism in TiO2 ultraviolet detector. IEEE Photon Technol. Lett. 27, 54–57 (2015)

    Article  CAS  Google Scholar 

  16. S.M. Ali, Gamma induced effects on structural, optical and electrical properties of n-TiO2/p-Si heterojunction. J. Mater. Sci. Mater. Electron. 28, 16314–16320 (2017)

    Article  CAS  Google Scholar 

  17. H. Khlyap, Physics and Technology of Semiconductor Thin Film-Based Active Elements and Devices (Bentham Science Publishers, Sharjah, 2009).

    Google Scholar 

  18. S. Lotfy, A. Atta, E. Abdeltwab, Comparative study of gamma and ion beam irradiation of polymeric nanocomposite on electrical conductivity. J. Appl. Polym. Sci. 135, 46146 (2018)

    Article  Google Scholar 

  19. A.G. El-Shamy, W.M. Attia, K.M. Abd El Kader, Enhancement of the conductivity and dielectric properties of PVA/Ag nanocomposite films using gamma irradiation. Mater. Chem. Phys. 191, 225–229 (2017)

    Article  CAS  Google Scholar 

  20. S.M. Ali, J. Mater. Sci. Mater. Electron. 28, 16314 (2017)

    Article  CAS  Google Scholar 

  21. S.M. Ali, M.S. AlGarawi, S. Aldawood, S.A. Al Salman, S.S. AlGamdi, Influence of gamma irradiation on the properties of PbS thin films. Radiat. Phys. Chem. 171, 108732 (2020)

    Article  CAS  Google Scholar 

  22. F.G. Hone, F.B. Dejene, J. Lumin. 201, 321–328 (2018)

    Article  CAS  Google Scholar 

  23. M.T.S. Nair, P.K. Nair, R.A. Zingaro, E.A. Meyers, Enhancement of photosensitivity in chemically deposited CdSe thin films by air annealing. J. Appl. Phys. 74, 1879–1884 (1993)

    Article  CAS  Google Scholar 

  24. K.C. Preetha, K.V. Murali, A.J. Ragina, K. Deepa, T.L. Remadevi, Curr. Appl. Phys. 12, 5359 (2012)

    Article  Google Scholar 

  25. C.S. Barett, T.B. Massalski, Crystallographic Methods Principles and Data, 3rd edn. (McGraw Hill, New York, 1996).

    Google Scholar 

  26. M. Shkir, A. Khan, A.M. El-Toni, A. Aldalbahi, I.S. Yahia, S. AlFaify, Structural, morphological, opto-nonlinear-limiting studies on Dy:PbI2/FTO thin films derived facilely by spin coating technique for optoelectronic technology. J. Phys. Chem. Solids 130, 189–196 (2019)

    Article  CAS  Google Scholar 

  27. J. Pelleg, E. Elish, Stress changes in chemical vapor deposition tungsten silicide (polycide) film measured by x-ray diffraction. J. Vac. Sci. Technol. A 20, 754–761 (2002)

    Article  CAS  Google Scholar 

  28. A. Arulanantham, S. Valanarasu, A. Kathalingam, K. Jeyadheepan, J. Mater. Sci. Mater. Electron. 29, 11358–11366 (2018)

    Article  CAS  Google Scholar 

  29. S. Yılmaz, S.B. Töreli, İ Polat, M.A. Olgar, M. Tomakin, E. Bacaksız, Enhancement in the optical and electrical properties of CdS thin films through Ga and K co-doping. Mater. Sci. Semicond. Process. 60, 45–52 (2017)

    Article  Google Scholar 

  30. P. Kubelka, F. Munk, Z. Tech. Phys. 12, 593 (1931)

    Google Scholar 

  31. P. Kubelka, New contributions to the optics of intensely light-scattering materials. J. Opt. Soc. Am. 38, 448–457 (1948)

    Article  CAS  Google Scholar 

  32. J. Tauc, A. Menth, J. Non-Cryst, Solids 569, 8–10 (1972)

    Google Scholar 

  33. T. Kako, N. Kikugawa, J. Ye, Photocatalytic activities of AgSbO3 under visible light irradiation. Catal. Today 131, 197–202 (2008)

    Article  CAS  Google Scholar 

  34. H. El-Zahed, The effect of γ-doses on the optical band gap of AgInSe2 films. J. Phys. Chem. Solids 62, 641–646 (2001)

    Article  CAS  Google Scholar 

  35. H.A. Wahab, A.A. Salama, A.A. El-Saeid, O. Nur, M. Willander, I.K. Battisha, Optical, structural and morphological studies of (ZnO) nano-rod thin films for biosensor applications using sol gel technique. Results Phys. 3, 46–51 (2013)

    Article  Google Scholar 

  36. T.K. Maity, S.L. Sharma, Effect of gamma radiation on optical and electrical properties of tellurium dioxide thin films. Bull. Mater. Sci. 31, 841–846 (2008)

    Article  CAS  Google Scholar 

  37. L. Xue, L. Xaing, L.P. Ting, C.X. Wang, L. Ying, C.C. Bao, Mg doping reduced full width at half maximum of the near-band-edge emission in Mg doped ZnO films. Chin. Phys. B 19, 027202 (2010)

    Article  Google Scholar 

  38. M. Sailai, A. Aierken, L. Qiqi, M. Heini, X. Zhao, J. Mo, G. Jie, R. Hao, Z. Yu, G. Qi, Semiconductors 54, 554–557 (2020)

    Article  CAS  Google Scholar 

  39. A. Echresh, C.O. Chey, M.Z. Shoushtari, V. Khranovskyy, O. Nur, M. Willander, UV photo-detector based on p-NiO thin film/n-ZnO nanorods heterojunction prepared by a simple process. J. Alloys Compd. 632, 165 (2015)

    Article  CAS  Google Scholar 

  40. S.M. Ali, S.M. Ramay, N.U. Rehman, T.S. AlKhuraiji, M.A. Shar, A. Mahmood, A. Hassan, M. Riaz, Investigation of gamma irradiation effects on the properties of CdS/p-Si heterostructure. Mater. Sci. Semicond. Process. 93, 44–49 (2019)

    Article  CAS  Google Scholar 

  41. Z. Yuan, A photodiode with high rectification ratio and low turn-on voltage based on ZnO nanoparticles and SubPs planar heterojunction. Phys. E 56, 160–164 (2014)

    Article  CAS  Google Scholar 

  42. K. Ejderha, N. Yildirim, A. Turat, Superlattice Microstruct. 47, 241 (2010)

    Article  CAS  Google Scholar 

  43. S.M. Sze, Physics of Semiconductor Devices (Wiley Eastern, New York, 1993).

    Google Scholar 

  44. A. Kumar, S. Arafin, M.C. Amann, R.S. Singh, Temperature dependence of electrical characteristics of Pt/GaN Schottky diode fabricated by UHV E-beam evaporation. Nanoscale Res. Lett. 8, 481 (2013)

    Article  Google Scholar 

  45. S.K. Cheung, N.W. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 49, 85–87 (1986)

    Article  CAS  Google Scholar 

  46. K.P. Hsueh, Temperature dependent current-voltage characteristics of n-MgxZn1-xO/p-GaN junction diodes. Microelectron. Eng. 88, 1016–1018 (2011)

    Article  CAS  Google Scholar 

  47. C.S. Tan, H.S. Chen, C.Y. Chiu, S.C. Wu, L.J. Chen, M.H. Huang, Facet-dependent electrical conductivity properties of PbS nanocrystals. Chem. Mater. 28, 1574–1580 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extent their appreciation to the Deputyship for Research and Innovation, “Ministry of Education” in Saudi Arabia for funding this research work through the project number IFKSURG-1441-315.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Aldawood or Syed Mansoor Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aldawood, S., AlGamdi, S.S., Salman, S.A.A. et al. Influence of γ-ray exposure and dose dependent characteristics of (n)PbS–(p)Si hetero-structure. J Mater Sci: Mater Electron 32, 11616–11627 (2021). https://doi.org/10.1007/s10854-021-05771-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05771-3

Navigation