Skip to main content
Log in

Room-temperature multiferrocity and magnetodielectric properties of ternary BiFeO3–Bi0.5Na0.5TiO3–CaTiO3 ceramics across the rhombohedral–orthorhombic phase boundary

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A novel ternary solid solution (1-y)((1-x)BiFeO3xBi0.5Na0.5TiO3)–yCaTiO3 (0 ≤ x ≤ 0.3, 0.15 ≤ y ≤ 0.25) is designed to present a rhombohedral–orthorhombic morphotropic phase boundary (MPB) with enhanced ferroelectricity, canted ferromagnetism, and room-temperature magnetoelectric responses. The addition of Bi0.5Na0.5TiO3 can generate a distinct MPB region and make BiFeO3–CaTiO3-based ceramics more denser. Therefore, superior ferroelectric properties with the remanent polarization of 37µC/cm2 can be obtained in the x = 0.3, y = 0.15 sample with the presence of rhombohedral–orthorhombic MPB. However, weak ferromagnetism is observed in both the rhombohedral and orthorhombic phases due to a destruction of the spiral spin structure of BiFeO3. The MPB with canted ferromagnetism is constructed. The maximum magnetoelectric interaction constant is found in the MPB compositions with x = 0.2, y = 0.2 which is related with the multiferroic phase boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature. 442, 759 (2006)

    Article  CAS  Google Scholar 

  2. H. Schmid, Some symmetry aspects of ferroics and single phase multiferroics. J. Phys. 20, 434201 (2008)

    Google Scholar 

  3. W. Prellier, M.P. Singh, P. Murugavel, The single-phase multiferroic oxides: from bulk to thin film. J. Phys. 17, R803 (2005)

    CAS  Google Scholar 

  4. G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463 (2009)

    Article  CAS  Google Scholar 

  5. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare et al., Epitaxial BiFeO3 multiferroic thin film heterostructures. Science. 299, 1719 (2003)

    Article  CAS  Google Scholar 

  6. S.T. Zhang, M.H. Lu, D. Wu, Y.F. Chen, N.B. Ming, Larger polarization and weak ferromagnetism in quenched BiFeO3 ceramics with a distorted rhombohedral crystal structure. Appl. Phys. Lett. 87, 262907 (2005)

    Article  Google Scholar 

  7. A. Hussain, X. Xu, G. Yuan, Y. Wang, Y. Yang, J. Yin, J. Liu, Z. Liu, The development of BiFeO3-based ceramics. Chin. Sci. Bull. 59, 5161 (2014)

    Article  CAS  Google Scholar 

  8. T. Zheng, J. Wu, D. Xiao, J. Zhu, Recent development in lead-free perovskite piezoelectric bulk materials. Prog. Mater Sci. 98, 552 (2018)

    Article  CAS  Google Scholar 

  9. D. Damjanovic, A morphotropic phase boundary system based on polarization rotation and polarization extension. Appl. Phys. Lett. 97, 062906 (2010)

    Article  Google Scholar 

  10. A.S. Mischenko, Q. Zhang, J.F. Scott, R.W. Whatmore, N.D. Mathur, Giant electrocaloric effect in thin-film PbZr(0.95)Ti(0.05)O3. Science 311, 1270 (2006)

    Article  CAS  Google Scholar 

  11. O. Dieguez, J. Iniguez, First-principles investigation of morphotropic transitions and phase-change functional responses in BiFeO3-BiCoO3 multiferroic solid solutions. Phys. Rev. Lett. 107, 057601 (2011)

    Article  Google Scholar 

  12. P. Mandal, M.J. Pitcher, J. Alaria, H. Niu, P. Borisov, P. Stamenov, J.B. Claridge, M.J. Rosseinsky, Designing switchable polarization and magnetization at room temperature in an oxide. Nature. 525, 363 (2015)

    Article  CAS  Google Scholar 

  13. C.M. Fernández-Posada, H. Amorín, C. Correas, O. Peña, M. Algueró, A. Castro, Mechanosynthesis and multiferroic properties of the BiFeO3–BiMnO3–PbTiO3 ternary system along its morphotropic phase boundary. Journal of Mater. Chem. C. 3, 2255 (2015)

    Article  Google Scholar 

  14. C.M. Fernandez-Posada, A. Castro, J.M. Kiat, F. Porcher, O. Pena, M. Alguero, H. Amorin, A novel perovskite oxide chemically designed to show multiferroic phase boundary with room-temperature magnetoelectricity. Nat. Commun. 7, 12772 (2016)

    Article  CAS  Google Scholar 

  15. S. Sharma, R.K. Dwivedi, J.M. Siqueiros, O. Raymond Herrera1, Coexistence of two ferroelectric phases and improved room-temperature multiferroic properties in the (0.70)BiFe1 – xCoxO3–(0.30)PbTiO3 system. J. Appl. Phys. 128, 124102 (2020)

    Article  CAS  Google Scholar 

  16. P. Esther Rubavathi, S.M. Benoy, K. Baskar, L. Venkidu, M. Veera Gajendra Babu, D. Dhayanithi, N.V. Giridharan, B. Sundarakannan, Impact of non-magnetic BaTiO3 substitution on structure, magnetic, thermal and ferroelectric properties of BiFeO3 ceramics at morphotropic phase boundary. Mater. Chem. Phys. 255, 123560 (2020)

  17. E.V. Ramana, A. Mahajan, M.P.F. Graça, A. Srinivas, M.A. Valente, Ferroelectric and magnetic properties of magnetoelectric (Na0.5Bi0.5)TiO3–BiFeO3 synthesized by acetic acid assisted sol–gel method. J. Eur. Ceram. Soc. 34, 4201 (2014)

    Article  CAS  Google Scholar 

  18. J. Wu, G.C. Zhao, Z.Z. Jiang, D. Wang, J. Yang, P. Tong, X.B. Zhu, L.H. Yin, W.H. Song, Y.P. Sun, Structural, piezoelectric, multiferroic and magnetoelectric properties of (1-x)BiFeO3-xBa1 – ySryTiO3 solid solutions. J. Electroceram. 44, 256–264 (2020)

    Article  CAS  Google Scholar 

  19. I.O. Troyanchuk, D.V. Karpinsky, M.V. Bushinskii, O. Prokhnenko, M. Kopcevicz, R. Szymczak, J. Pietosa, Crystal structure and properties of Bi1 – xCaxFeO3 and Bi1 – xCaxFeO1–xTixO3 solid solutions. J. Exp. Theor. Phys. 107, 83 (2008)

    Article  CAS  Google Scholar 

  20. J. Wu, J. Wang, Multiferroic behavior of BiFeO3–RTiO3 (Mg, Sr, Ca, Ba, and Pb) thin films. J. Appl. Phys. 108, 026101 (2010)

    Article  Google Scholar 

  21. D.V. Karpinsky, I.O. Troyanchuk, J.V. Vidal, N.A. Sobolev, A.L. Kholkin, Enhanced ferroelectric, magnetic and magnetoelectric properties of Bi1 – xCaxFe1–xTixO3 solid solutions. Solid State Commun. 151, 536 (2011)

    Article  CAS  Google Scholar 

  22. Q.Q. Wang, Z. Wang, X.Q. Liu, X.M. Chen, D.W. Johnson, Improved structure stability and multiferroic characteristics in CaTiO3-modified BiFeO3 ceramics. J. Am. Ceram. Soc. 95, 670 (2012)

    Article  CAS  Google Scholar 

  23. V. Kumar, S. Singh, Improved structure stability, optical and magnetic properties of Ca and Ti co-substituted BiFeO3 nanoparticles. Appl. Surf. Sci. 386, 78 (2016)

    Article  CAS  Google Scholar 

  24. W.J. Huang, J. Yang, Y.F. Qin, P. Xiong, D. Wang, L.H. Yin, X.W. Tang, W.H. Song, P. Tong, X.B. Zhu, Y.P. Sun, Room temperature multiferrocity and magnetodielectric properties of ternary (1-x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xBiFeO3 (0 ≤ x ≤ 0.9) solid solutions. Appl. Phys. Lett. 111, 112902 (2017)

    Article  Google Scholar 

  25. W.J. Huang, J. Yang, Y.F. Qin, D. Wang, L.H. Yin, X.W. Tang, W.H. Song, P. Tong, X.B. Zhu, Y.P. Sun, Tuning the ferroelectric transition and magnetic ordering by the polar Ba0.1Sr0.9TiO3 substitution in the multiferroic (1 – x)Ba0.1Sr0.9TiO3-xBiFeO3 (0.2 ≤ x ≤ 0.8) solid solution. J. Alloys Compd. 744, 321 (2018)

    Article  CAS  Google Scholar 

  26. D.V. Karpinsky, I.O. Troyanchuk, V. Sikolenko, V. Efimov, A.L. Kholkin, Electromechanical and magnetic properties of BiFeO3-LaFeO3-CaTiO3 ceramics near the rhombohedral-orthorhombic phase boundary. J. Appl. Phys. 113, 187218 (2013)

    Article  Google Scholar 

  27. E. Birks, M. Dunce, R. Ignatans, A. Kuzmin, A. Plaude, M. Antonova, K. Kundzins, A. Sternberg, Structure and dielectric properties of Na0.5Bi0.5TiO3-CaTiO3 solid solutions. J. Appl. Phys. 119, 074102 (2016)

    Article  Google Scholar 

  28. W. Hu, X. Tan, K. Rajan, S. Zhang, Piezoelectric ceramics with compositions at the morphotropic phase boundary in the BiFeO3-PbZrO3-PbTiO3 ternary system. J. Am. Ceram. Soc. 94, 4358 (2011)

    Article  CAS  Google Scholar 

  29. D. Pang, C. He, S. Han, S. Pan, X. Long, H. Tailor, A new multiferroic ternary solid solution system of BiFeO3–Pb(Fe1/2Nb1/2)O3–PbTiO3. J. Eur. Ceram. Soc. 35, 2033 (2015)

    Article  CAS  Google Scholar 

  30. V. Kumar, S. Singh, Optical and magnetic properties of (1-x)BiFeO3 -xCaTiO3 nanoparticles. J. Alloys Compd. 732, 350 (2018)

    Article  CAS  Google Scholar 

  31. A. Singh, A. Senyshyn, H. Fuess, S.J. Kennedy, D. Pandey, Magnetic transitions and site-disordered induced weak ferromagnetism in (1-x)BiFeO3-xBaTiO3. Phys. Rev. B 89, 024108 (2014)

    Article  Google Scholar 

  32. J. Chen, B. Xu, X.Q. Liu, T.T. Gao, L. Bellaiche, X.M. Chen, Symmetry modulation and enhanced multiferroic characteristics in Bi1 – xNdxFeO3 ceramics. Adv. Funct. Mater. 29, 1806399 (2019)

    Article  Google Scholar 

  33. L. Zhang, H. Ke, H. Zhang, F. Li, J. Zhao, H. Luo, L. Cao, G. Zeng, X. Li, W. Wang, D. Jia, Y. Zhou, Effects of morphotropic phase boundary on the electric behavior of Er/Ti co-doped BiFeO3 ceramics. Scr. Mater. 158, 71 (2019)

    Article  CAS  Google Scholar 

  34. T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, Y. Tokura, Magnetocapacitance effect in multiferroic BiMnO3. Phys. Rev. B 67, 180401 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Joint Funds of the National Natural Science Foundation of China and the Chinese Academy of Sciences’ Large-Scale Scientific Facility (Grant No. U1832115), the National Key Research and Development Program of China (2017YFA0403502), the National Natural Science Foundation of China (Grant No. 61904019), and the Natural Science Foundation of universities of Jiangsu Province of China (19KJB140005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W. J. Huang or J. Yang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W.J., Yang, J.J., Shu, M.F. et al. Room-temperature multiferrocity and magnetodielectric properties of ternary BiFeO3–Bi0.5Na0.5TiO3–CaTiO3 ceramics across the rhombohedral–orthorhombic phase boundary. J Mater Sci: Mater Electron 32, 11524–11535 (2021). https://doi.org/10.1007/s10854-021-05729-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05729-5

Navigation