Skip to main content

Advertisement

Log in

Structural and stability analysis of Na4Mn4Ti5O18 for energy storage application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report a single-phase Na4Mn4Ti5O18 oxide prepared via ceramic processing route. Rietveld refinement of X-ray diffraction results indicated orthorhombic unit cell indexed with Pbam space group. Further, structural analysis using X-ray diffraction, transmission electron microscopy and Raman spectroscopy suggested crystal structure comprising two distinct tunnel pathway, polygonal and Z-shaped tunnels with void dimensions ~ 4.07 Å and ~ 3.01 Å, respectively, suitable for reversible cation transport desirable for energy storage applications. X-ray photoelectron spectroscopy confirmed presence of Mn2+, Mn3+, Mn4+ and Ti4+ in Na4Mn4Ti5O18. Surface morphology in field emission scanning electron microscopy exhibited inhomogenously distributed micro-bead grains separated by well-defined boundaries in good agreement with complex impedance spectrum results. Estimated dc conductivity and surface area is ~ 1.745 × 10− 6 S cm− 1 and ~ 0.66 m2g− 1 respectively. Electrochemical energy storage performance with cell; Na || 1 M NaFSI (EC : DMC, 1:1 v/v%) || Na4Mn4Ti5O18 in voltage range 2.0–3.8 V indicated reversible redox action. Identical cell in voltage range 0.01–2.5 V, exhibited pseudo-capacitive behaviour. Results suggest energy storage possibility with Na4Mn4Ti5O18 electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Guo, J. Yi, Y. Sun, H. Zhou, Energy Environ. Sci. 9, 2978 (2016)

    Article  CAS  Google Scholar 

  2. M.M. Doeff, J. Cabana, M. Shirpour, J. Inorg. Organomet. Polym Mater. 24, 5 (2014)

    Article  CAS  Google Scholar 

  3. K. Zaghib, M. Simoneau, M. Armand, M. Gauthier, J. Power Sources 81–82, 300 (1999)

    Article  Google Scholar 

  4. T. Ohzuku, J. Electrochem. Soc. 142, 1431 (1995)

    Article  CAS  Google Scholar 

  5. J. Wolfenstine, J.L. Allen, J. Power Sources 180, 582 (2008)

    Article  CAS  Google Scholar 

  6. L. Yang, L. Gao, J. Alloys Compd. 485, 93 (2009)

    Article  CAS  Google Scholar 

  7. Z. Zhang, L. Cao, J. Huang, S. Zhou, Y. Huang, Y. Cai, Ceram. Int. 39, 6139 (2013)

    Article  CAS  Google Scholar 

  8. Y.R. Zhu, P. Wang, T.F. Yi, L. Deng, Y. Xie, Solid State Ionics 276, 84 (2015)

    Article  CAS  Google Scholar 

  9. P. Svens, R. Eriksson, J. Hansson, M. Behm, T. Gustafsson, G. Lindbergh, J. Power Sources 270, 131 (2014)

    Article  CAS  Google Scholar 

  10. S. Scharner, J. Electrochem. Soc. 146, 857 (1999)

    Article  CAS  Google Scholar 

  11. T.F. Yi, S.Y. Yang, Y. Xie, J. Mater. Chem. A 3, 5750 (2015)

    Article  CAS  Google Scholar 

  12. C.C. Yang, H.C. Hu, S.J. Lin, W.C. Chien, J. Power Sources 258, 424 (2014)

    Article  CAS  Google Scholar 

  13. P. Senguttuvan, G. Rousse, V. Seznec, J.M. Tarascon, M.R. Palacín, Chem. Mater. 23, 4109 (2011)

    Article  CAS  Google Scholar 

  14. J. Ni, S. Fu, C. Wu, Y. Zhao, J. Maier, Y. Yu, L. Li, Adv. Energy Mater. 6, 2 (2016)

    Google Scholar 

  15. Y. Cao, L. Xiao, W. Wang, D. Choi, Z. Nie, J. Yu, L.V. Saraf, Z. Yang, J. Liu, Adv. Mater. 23, 3155 (2011)

    Article  CAS  Google Scholar 

  16. Y. Wang, J. Liu, B. Lee, R. Qiao, Z. Yang, S. Xu, X. Yu, L. Gu, Y. Hu, W. Yang, K. Kang, H. Li, X. Yang, L. Chen, X. Huang, Nat. Commun. 6, 1 (2015)

    Google Scholar 

  17. M. Jayakumar, K. Hemalatha, K. Ramesha, A.S. Prakash, Phys. Chem. Chem. Phys. 17, 20733 (2015)

    Article  CAS  Google Scholar 

  18. W.G. Mumme, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 24, 1114 (1968)

    Article  CAS  Google Scholar 

  19. N. Österbacka, J. Wiktor. J. Phys. Chem. C 125, 1200–1207 (2021)

    Article  Google Scholar 

  20. K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011)

    Article  CAS  Google Scholar 

  21. B.A. DeAngelis, R.E. Newham, W.B. White, Anerican Mineral. 57, 255 (1972)

    CAS  Google Scholar 

  22. C.S. Tu, A.R. Guo, R. Tao, R.S. Katiyar, R. Guo, A.S. Bhalla, J. Appl. Phys. 79, 3235 (1996)

    Article  CAS  Google Scholar 

  23. L. Zhao, J. Ni, H. Wang, L. Gao, Funct. Mater. Lett. 6, 1 (2013)

    Google Scholar 

  24. K. Thangavelu, S. Rayaprol, V. Siruguri, P.U. Sastry, S. Asthana, AIP Conf. Proc. 1665, 1 (2015)

    Google Scholar 

  25. T. Runka, M. Berkowski, J. Mater. Sci. 47, 5393 (2012)

    Article  CAS  Google Scholar 

  26. K. Ghosh, M.M. Murshed, T.M. Gesing, J. Mater. Sci. 54, 13651 (2019)

    Article  CAS  Google Scholar 

  27. T. Gao, M. Glerup, F. Krumeich, R. Nesper, H. Fjellvâg, P. Norby, J. Phys. Chem. C 112, 13134 (2008)

    Article  CAS  Google Scholar 

  28. A.V. Naumkin, A. Kraut-Vass, S.W. Gaarenstroom, C.J. Powell, NIST Stand. Ref. Database 20, Version 4.1 (2012)

  29. P. Liu, W. Cai, M. Fang, Z. Li, H. Zeng, J. Hu, X. Luo, W. Jing, Nanotechnology 20, 285707–28571 (2009)

    Article  Google Scholar 

  30. R. Tholkappiyan, A.N. Naveen, S. Sumithra, K. Vishista, J. Mater. Sci. 50, 5833 (2015)

    Article  CAS  Google Scholar 

  31. C. Pei, R. Ding, X. Yu, L. Feng, ChemCatChem 11, 4617 (2019)

    Article  CAS  Google Scholar 

  32. T. Jedsukontorn, T. Ueno, N. Saito, M. Hunsom, J. Alloys Compd. 726, 567 (2017)

    Article  CAS  Google Scholar 

  33. Y.-C. Ho, F.-M. Huang, Y.-C. Chang, J. Biomed. Mater. Res. B Appl. Biomater. 83, 340 (2005)

    Google Scholar 

  34. S.A. Abdullah, M.Z. Sahdan, N. Nayan, Z. Embong, C.R.C. Hak, F. Adriyanto, Mater. Lett. 263, 127143 (2020)

    Article  CAS  Google Scholar 

  35. M.A. Salim, G.D. Khattak, N. Tabet, L.E. Wenger, J. Electron Spectros. Relat. Phenomena 128, 75 (2003)

    Article  CAS  Google Scholar 

  36. S. Xiao, P. Xu, Q. Peng, J. Chen, J. Huang, F. Wang, N. Noor, Polymers Basel 9, 735 (2017)

    Article  Google Scholar 

  37. X.Y. Qiu, Q.C. Zhuang, Q.Q. Zhang, R. Cao, P.Z. Ying, Y.H. Qiang, S.G. Sun, Phys. Chem. Chem. Phys. 14, 2617 (2012)

    Article  CAS  Google Scholar 

  38. B. Nageswara Rao, O. Padmaraj, D. Narsimulu, M. Venkateswarlu, N. Satyanarayana, Ceram. Int. 41, 14070 (2015)

    Article  CAS  Google Scholar 

  39. P.S. Kumar, A. Sakunthala, M. Prabu, M.V. Reddy, R. Joshi, Solid State Ionics 267, 1 (2014)

    Article  Google Scholar 

  40. C.Y. Yu, J.S. Park, H.G. Jung, K.Y. Chung, D. Aurbach, Y.K. Sun, S.T. Myung, Energy Environ. Sci. 8, 2019 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Ministry of Human Resource & Development (MHRD), Govt. of India for financial and infrastructural support through IIT Patna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajit Mandal.

Ethics declarations

Conflict of interest

The authors of this manuscript entitled “Structural and Stability Analysis of Na4Mn4Ti5O18for Energy Storage Application” do hereby declare that we have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, B., Thakur, A.K. Structural and stability analysis of Na4Mn4Ti5O18 for energy storage application. J Mater Sci: Mater Electron 32, 10678–10691 (2021). https://doi.org/10.1007/s10854-021-05723-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05723-x

Navigation