Skip to main content
Log in

Carbon doping-induced defect centers in anodized alumina with enhanced optically stimulated luminescence

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Anodized aluminum oxide (AAO) in amorphous form is shown to be a prospective phosphor for optically stimulated luminescence (OSL) by implanting 50 keV carbon ions at a fluence of 1 × 1016 ions/cm2 at room temperature. An almost 20-fold enhancement in continuous wave OSL (CW-OSL) sensitivity is obtained in carbon-doped AAO (C:AAO) by exposing to beta radiation, while an almost linear increase in CW-OSL intensity is recorded with increasing dose from 0.3 to 5 Gy. However, cathodoluminescence (CL) suggests an upsurge of oxygen vacancies, especially F+ and F22+ centers, at the cost of F center-related defects in C:AAO. Detailed X-ray photoelectron spectroscopy (XPS) analysis further reveals that the implanted carbon atoms can act as cationic impurities in AAO and stabilize the nearby F+ centers via substitution of Al3+ by C2+. The combined CL and XPS results are also shown to be capable of illustrating the CW-OSL response. This study would, therefore, be a benchmark for understanding the role of carbon in the substitutional sites of AAO for generating OSL active electron traps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. A. Agrawal, R.K. Saroj, T.A. Dar, P. Baraskar, P. Sen, S. Dhar, J. Appl. Phys. 122, 195303 (2017)

    Article  CAS  Google Scholar 

  2. W.-Y. Ching, L. Ouyang, P. Rulis, H. Yao, Phys. Rev. B 78, 014106 (2008)

    Article  CAS  Google Scholar 

  3. C. Zhang, J. Lin, Chem. Soc. Rev. 41, 7938 (2012)

    Article  CAS  Google Scholar 

  4. A.E. Akselrod, M.S. Akselrod, Rad. Prot. Dosi. 100, 217 (2002)

    Article  CAS  Google Scholar 

  5. X. Yang, J. Xu, H. Li et al., J. Ame. Cer. Soc. 92, 2265 (2009)

    Article  CAS  Google Scholar 

  6. L. Bøtter-Jensen, S.W. McKeever, A.G. Wintle, Optically Stimulated Luminescence Dosimetry (Elsevier, 2003).

    Book  Google Scholar 

  7. T. Matsuo, T. Kato, H. Kimura et al., J. Mat. Sci. 31, 12427 (2020)

    CAS  Google Scholar 

  8. C. Palan, K. Koparkar, N. Bajaj, A. Soni, S. Omanwar, J. Mat. Sci. 27, 5600 (2016)

    CAS  Google Scholar 

  9. G. Denis, M. Akselrod, E. Yukihara, J. Appl. Phys. 109, 104906 (2011)

    Article  CAS  Google Scholar 

  10. S. Omanwar, C. Palan, J. Mat. Sci. 29, 7388 (2018)

    CAS  Google Scholar 

  11. M. Itou, A. Fujiwara, T. Uchino, J. Phys. Chemi. C 113, 20949 (2009)

    Article  CAS  Google Scholar 

  12. E. Yukihara, R. Gaza, S. McKeever, C. Soares, Rad. Meas. 38, 59 (2004)

    Article  CAS  Google Scholar 

  13. N.M. Trindade, L.G. Jacobsohn, E.M. Yoshimura, J. Lumi. 206, 298 (2019)

    Article  CAS  Google Scholar 

  14. N. Salah, P. Sahare, A. Rupasov, J. Lumi. 124, 357 (2007)

    Article  CAS  Google Scholar 

  15. V. Pawade, M. Kolte, N. Kakade, S. Dhoble, Optik 203, 164004 (2020)

    Article  CAS  Google Scholar 

  16. S. Bhowmick, R. Sen, C. Saini et al., J. Phys. Chem. C. 125, 4846 (2021)

    Article  CAS  Google Scholar 

  17. W. De Azevedo, G. De Oliveira, E. da Silva Jr, H. Khoury, E. Oliveira, de Jesus, , Rad. Prot. Dosi. 119, 201 (2006)

    Article  CAS  Google Scholar 

  18. N Xie, Q Wang (2013) Eighth International Conference on Thin Film Physics and ApplicationsInternational Society for Optics and Photonics,

  19. S. Bhowmick, S. Pal, D. Das et al., J. Appl. Phys. 124, 134902 (2018)

    Article  CAS  Google Scholar 

  20. S. Bhowmick, S. Pal, A. Singh et al., J. Appl. Phys. 126, 164904 (2019)

    Article  CAS  Google Scholar 

  21. Z. Guo, F. Ambrosio, A. Pasquarello, Phys. Rev. Appl. 11, 024040 (2019)

    Article  CAS  Google Scholar 

  22. X. Wu, S. Xiong, J. Guo et al., J. Phys. Chem. C 116, 2356 (2012)

    Article  CAS  Google Scholar 

  23. T. Perevalov, O. Tereshenko, V. Gritsenko et al., J. Appl. Phys. 108, 013501 (2010)

    Article  CAS  Google Scholar 

  24. A. Mavrič, M. Valant, C. Cui, Z.M. Wang, J. Non-Cryst. Solids 521, 119493 (2019)

    Article  CAS  Google Scholar 

  25. E. Yukihara, V. Whitley, S. McKeever, A. Akselrod, M. Akselrod, Rad. Meas. 38, 317 (2004)

    Article  CAS  Google Scholar 

  26. X.-B. Yang, H.-J. Li, Q.-Y. Bi, Y. Cheng, Q. Tang, J. Xu, J. Appl. Phys. 104, 123112 (2008)

    Article  CAS  Google Scholar 

  27. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nuc. Inst. Meth. Phys. Res. Sec. B 268, 1818 (2010)

    Article  CAS  Google Scholar 

  28. P. Das, T.K. Chini, Curr. Sci. 101, 849 (2011)

    CAS  Google Scholar 

  29. S. Pal, A. Sarkar, S. Chattopadhyay et al., Nuc. Inst. Meth. Phys. Res. Sec. B 311, 20 (2013)

    Article  CAS  Google Scholar 

  30. L. Nascimento, C. Saldarriaga, F. Vanhavere, E. D’Agostino, G. Defraene, Y. De Deene, Rad. Meas. 56, 200 (2013)

    Article  CAS  Google Scholar 

  31. A. Soni, D. Mishra, S. Gaur et al., Nuc. Inst. Meth. Phys. Res. 935, 191 (2019)

    Article  CAS  Google Scholar 

  32. D. Mishra, A. Soni, N. Rawat, M. Kulkarni, B. Bhatt, D. Sharma, Rad. Meas. 46, 635 (2011)

    Article  CAS  Google Scholar 

  33. M. Agarwal, S. Garg, K. Asokan, D. Kanjilal, P. Kumar, RSC Adv. 7, 13836 (2017)

    Article  CAS  Google Scholar 

  34. E.G. Yukihara, S.W. McKeever, Optically Stimulated Luminescence: Fundamentals and Applications (John Wiley & Sons, 2011).

    Book  Google Scholar 

  35. H Guthrey, J Moseley (2020) Adv. Ener. Mat.: 1903840.

  36. Q. Guo, Y. Hachiya, T. Tanaka, M. Nishio, H. Ogawa, J. Lumi. 119, 253 (2006)

    Article  CAS  Google Scholar 

  37. E. Kouroukla, I. Bailiff, I. Terry, L. Bowen, Rad. Meas. 71, 117 (2014)

    Article  CAS  Google Scholar 

  38. D. Kysil, A. Vasin, S. Sevostianov et al., Nano. Res. Lett. 12, 1 (2017)

    Article  CAS  Google Scholar 

  39. Y. Li, G. Li, G. Meng, L. Zhang, F. Phillipp, J. Phys.: Cond. Matt. 13, 2691 (2001)

    CAS  Google Scholar 

  40. C. Bonnelle, P. Jonnard, Phys. Rev. B 82, 075132 (2010)

    Article  CAS  Google Scholar 

  41. D. Bloom, D.R. Evans, S.A. Holmstrom, J.C. Polf, S.W. McKeever, V. Whitley, Rad. Meas. 37, 141 (2003)

    Article  CAS  Google Scholar 

  42. Y. Yamamoto, N. Baba, S. Tajima, Nature 289, 572 (1981)

    Article  CAS  Google Scholar 

  43. Z. Wu, A. Türkler, R. Brooks et al., Nuc. Inst. Meth. Phys. Res. Sec. B 191, 121 (2002)

    Article  CAS  Google Scholar 

  44. G. Pogatshnik, Y. Chen, B. Evans, IEEE Trans. Nucl. Sci. 34, 1709 (1987)

    Article  Google Scholar 

  45. B.D. Evans, G.J. Pogatshnik, Y. Chen, Nucl. Inst. Meth. Phys. Res. Sec. B 91, 258 (1994)

    Article  CAS  Google Scholar 

  46. S Nikiforov, A Borbolin, AY Marfin, D Ananchenko, S Zvonarev (2020) Rad. Meas.: 106303.

  47. B. Evans, M. Stapelbroek, Solid State Comm. 33, 765 (1980)

    Article  CAS  Google Scholar 

  48. M. Springis, J. Valbis, Phys. Stat. Soli. (b) 123, 335 (1984)

    Article  CAS  Google Scholar 

  49. A.I. Kostyukov, A.V. Zhuzhgov, V.V. Kaichev, A.A. Rastorguev, V.N. Snytnikov, V.N. Snytnikov, Opt. Mat. 75, 757 (2018)

    Article  CAS  Google Scholar 

  50. D. Tang, J. Su, Q. Yang et al., Rsc Adv. 5, 55170 (2015)

    Article  CAS  Google Scholar 

  51. A.N. Kumar, S. Prasanna, B. Subramanian, S. Jayakumar, G.M. Rao, J. Appl. Phys. 117, 125307 (2015)

    Article  CAS  Google Scholar 

  52. G. Yang, D. Gao, J. Zhang, J. Zhang, Z. Shi, D. Xue, J. Phys. Chem. C 115, 16814 (2011)

    Article  CAS  Google Scholar 

  53. M. Choi, J.L. Lyons, A. Janotti, C.G. Van de Walle, Appl. Phys. Lett. 102, 142902 (2013)

    Article  CAS  Google Scholar 

  54. J. Zhu, K. Muthe, R. Pandey, J. Phys. Chem. Solids 75, 379 (2014)

    Article  CAS  Google Scholar 

  55. H.D. Tailor, J.L. Lyons, M. Choi, A. Janotti, C.G. Van de Walle, J. Vacu. Sci. & Tech. A 33, 01A120 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support received from the Shiv Nadar University and DAE-BRNS, India under the project No. 34/14/24/2016-BRNS/34365. Mrs. K. D. Devi from IUAC, New Delhi is highly acknowledged for her kind help during ion implantation. The authors, especially SB and SP, would also acknowledge the active participation of Mr. D. Dey, SINP India during CL measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aloke Kanjilal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhowmick, S., Pal, S., Singh, A. et al. Carbon doping-induced defect centers in anodized alumina with enhanced optically stimulated luminescence. J Mater Sci: Mater Electron 32, 10635–10643 (2021). https://doi.org/10.1007/s10854-021-05719-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05719-7

Navigation