Skip to main content

Advertisement

Log in

Facile synthesis of BiOCl/g-C3N4 heterojunction via in situ hydrolysis of Bi nanospheres: a high-efficiency visible-light-driven photocatalyst

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

BiOCl/g-C3N4 (BC) heterojunctions were constructed successfully through a novel in situ hydrolysis method by taking metallic Bi nanospheres as Bi source. The TEM and HRTEM images showed the heterogeneous nanostructures at the interface between BiOCl and g-C3N4. The combination of BiOCl and g-C3N4 enlarged the light adsorption range of the BC heterojunctions, which extended to visible region. Besides, the contact of the two semiconductors at the heterointerfaces improved the separation efficiency of photoinduced charge carriers, thus endowing the BC samples with superior visible-light-driven (VLD) photocatalytic performance in degrading organic pollutants. Notably, the BC12% sample exhibited the optimized photocatalytic activity in which 97.3% of RhB was decomposed within 30 min, achieving 13.87- and 4.26-times improvement than the bare BiOCl and pristine g-C3N4, respectively. Moreover, the trapping experiments revealed that .O2 and h+ were the dominant active species during the degradation processes of RhB. Meanwhile, the possible degradation pathway of RhB was proposed on the basis of the intermediate products detected by LC–MS, and the appearance photocatalytic mechanisms were also discussed in detail. As an original strategy to obtain samples with highly dispersed heterointerface, this work provides a facile route for the surface modification of g-C3N4 via a facile hydrolysis process of metallic particles to form heterostructures and very promising for practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. X.D. Xiao, Y.T. Gao, L.P. Zhang, J.C. Zhang, Q. Zhang, Q. Li, Adv. Mater. 32, 2003082 (2020)

    Article  CAS  Google Scholar 

  2. Y.F. Wang, A.M. Liu, Chem. Soc. Rev. 49, 4906–4925 (2020)

    Article  CAS  Google Scholar 

  3. F.P. Pan, Y. Yang, Energy Environ. Sci. 13, 2275–2309 (2020)

    Article  CAS  Google Scholar 

  4. C.H. Gong, J.W. Chu, S.F. Qian, C.B. Li, T.Y. Zhai, J. Xiong, Adv. Mater. 32, 1908242 (2020)

    Article  CAS  Google Scholar 

  5. G. Yang, D.M. Chen, H. Ding, J.J. Feng, J.Z. Zhang, Y.F. Zhu, S. Hamid, D.W. Bahnemann, Appl. Catal. B 219, 611–618 (2017)

    Article  CAS  Google Scholar 

  6. J. Yang, Y.J. Liang, K. Li, G. Yang, S. Yin, Appl. Catal. B 250, 17–30 (2019)

    Article  CAS  Google Scholar 

  7. M. Rochkind, M. Pandiri, M.S. Hossain, F.W. Foss, K. Rajeshwar, Y. Paz, J. Phys. Chem. C 120, 16069–16079 (2016)

    Article  CAS  Google Scholar 

  8. M. Li, S.X. Yu, H.W. Huang, X.W. Li, Y.B. Feng, C. Wang, Y.G. Wang, T.Y. Ma, L. Gao, Y.H. Zhang, Angew. Chem. Int. Ed. 58, 9517–9521 (2019)

    Article  CAS  Google Scholar 

  9. J. Qiu, M. Li, J. Xu, X.F. Zhang, J. Yao, J. Hazard. Mater. 389, 121858 (2020)

    Article  CAS  Google Scholar 

  10. H. Cheng, B. Huang, Y. Dai, Nanoscale 6, 2009–2026 (2014)

    Article  CAS  Google Scholar 

  11. J. Jiang, K. Zhao, X. Xiao, L. Zhang, J. Am. Chem. Soc. 134, 4473–4476 (2012)

    Article  CAS  Google Scholar 

  12. M. Li, J. Zhang, H. Gao, F. Li, S.E. Lindquist, N. Wu, R. Wang, ACS Appl. Mater. Interfaces 8, 6662–6668 (2016)

    Article  CAS  Google Scholar 

  13. J.J. Sun, X.Y. Li, Q.D. Zhao, B.J. Liu, Appl. Catal. B 281, 119478 (2021)

    Article  CAS  Google Scholar 

  14. D. Mao, A. Yu, S. Ding, F. Wang, S. Yang, C. Sun, H. He, Y. Liu, K. Yu, Appl. Surf. Sci. 389, 742–750 (2016)

    Article  CAS  Google Scholar 

  15. S. Zhong, X.Z. Wang, Y. Wang, F.L. Zhou, J.M. Li, S. Liang, C.Y. Li, J. Alloys Compd. 843, 155598 (2020)

    Article  CAS  Google Scholar 

  16. X. Ma, K.Y. Chen, B. Niu, Y. Li, L. Wang, J.W. Huang, H.D. She, Q.Z. Wang, Chin. J. Catal. 41, 1535–1543 (2020)

    Article  CAS  Google Scholar 

  17. J. Yu, B. Wei, L. Zhu, H. Gao, W. Sun, L. Xu, Appl. Surf. Sci. 284, 497–502 (2013)

    Article  CAS  Google Scholar 

  18. P.Q. Wang, J.Y. Liu, Y.Q. Hu, Y. Bai, Z. Fan, Micro Nano Lett. 7, 876–879 (2012)

    Article  CAS  Google Scholar 

  19. Z. Jiang, Y. Liu, T. Jing, B. Huang, Z. Wang, X. Zhang, X. Qin, Y. Dai, RSC Adv. 5, 47261–47264 (2015)

    Article  CAS  Google Scholar 

  20. N. Yu, Y. Chen, W. Zhang, M. Wen, L. Zhang, Z. Chen, Mater. Lett. 179, 154–157 (2016)

    Article  CAS  Google Scholar 

  21. A. Dash, S. Sarkar, V.N. Adusumalli, V. Mahalingam, Langmuir 30, 1401–1409 (2014)

    Article  CAS  Google Scholar 

  22. C. Yu, F. Cao, G. Li, R. Wei, J.C. Yu, R. Jin, Q. Fan, C. Wang, Sep. Purif. Technol. 120, 110–122 (2013)

    Article  CAS  Google Scholar 

  23. X. Yan, X. Zhu, R. Li, W. Chen, J. Hazard. Mater. 303, 1–9 (2016)

    Article  CAS  Google Scholar 

  24. Z. Zhang, Y. Zhou, S. Yu, M. Chen, F. Wang, Mater. Lett. 150, 97–100 (2015)

    Article  CAS  Google Scholar 

  25. F. Duo, Y. Wang, X. Mao, X. Zhang, Y. Wang, C. Fan, Appl. Surf. Sci. 340, 35–42 (2015)

    Article  CAS  Google Scholar 

  26. L. Yu, X. Zhang, G. Li, Y. Cao, Y. Shao, D. Li, Appl. Catal. B 187, 301–309 (2016)

    Article  CAS  Google Scholar 

  27. D. Yue, D. Chen, Z. Wang, H. Ding, R. Zong, Y. Zhu, Phys. Chem. Chem. Phys. 16, 26314–26321 (2014)

    Article  CAS  Google Scholar 

  28. C. Cao, L. Xiao, C. Chen, Q. Cao, Appl. Surf. Sci. 357, 1171–1179 (2015)

    Article  CAS  Google Scholar 

  29. P. Wang, H. Tang, Y. Ao, C. Wang, J. Hou, J. Qian, Y. Li, J. Alloys Compd. 688, 1–7 (2016)

    Article  CAS  Google Scholar 

  30. Y.M. Wu, M.C. Wen, M. Navlani-García, Y. Kuwahara, K. Mori, H. Yamashita, Chem. Asian J. 12, 860–867 (2017)

    Article  CAS  Google Scholar 

  31. Y. Zheng, Y. Jiao, Y. Zhu, Q. Cai, A. Vasileff, L.H. Li, Y. Han, Y. Chen, S.Z. Qiao, J. Am. Chem. Soc. 139, 3336–3339 (2017)

    Article  CAS  Google Scholar 

  32. J. Yan, M.T.F. Rodrigues, Z. Song, H. Li, H. Xu, H. Liu, J. Wu, Y. Xu, Y. Song, Y. Liu, P. Yu, W. Yang, R. Vajtai, H. Li, S. Yuan, P.M. Ajayan, Adv. Funct. Mater. 27, 1700653 (2017)

    Article  CAS  Google Scholar 

  33. Q. Han, B. Wang, J. Gao, Z. Cheng, Y. Zhao, Z. Zhang, L. Qu, ACS Nano 10, 2745–2751 (2016)

    Article  CAS  Google Scholar 

  34. W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Chem. Rev. 116, 7159–7329 (2016)

    Article  CAS  Google Scholar 

  35. F. Dong, Z. Zhao, Y. Sun, Y. Zhang, S. Yan, Z. Wu, Environ. Sci. Technol. 49, 12432–12440 (2015)

    Article  CAS  Google Scholar 

  36. Z.Q. Gao, K.Y. Chen, L. Wang, B. Bai, H. Liu, Q.Z. Wang, Appl. Catal. B 268, 118462 (2020)

    Article  CAS  Google Scholar 

  37. Z.Q. Gao, L.L. Wang, L. Wang, J.W. Huang, H.D. She, Q.Z. Wang, Int. J. Hydrogen Energy 44, 24407–24417 (2019)

    Article  CAS  Google Scholar 

  38. Q.B. Li, X. Zhao, J. Yang, C.J. Jia, Z. Jin, W.L. Fan, Nanoscale 7, 18971–18983 (2015)

    Article  CAS  Google Scholar 

  39. J.M. Song, C.J. Mao, H.L. Niu, Y.H. Shen, S.Y. Zhang, CrystEngComm 12, 3875–3881 (2010)

    Article  CAS  Google Scholar 

  40. C.Y. Wang, X. Zhang, X.N. Song, W.K. Wang, H.Q. Yu, ACS Appl. Mater. Interfaces 8, 5320–5326 (2016)

    Article  CAS  Google Scholar 

  41. Y. Hong, Y. Jiang, C. Li, W. Fan, X. Yan, M. Yan, W. Shi, Appl. Catal. B 180, 663–673 (2016)

    Article  CAS  Google Scholar 

  42. R. Ye, H. Fang, Y. Zheng, N. Li, Y. Wang, X. Tao, ACS Appl. Mater. Interfaces 8, 13879–13889 (2016)

    Article  CAS  Google Scholar 

  43. T.H. Nathan, H. Son, L.S. Jeffrey, C.B. Mullins, ACS Nano 6, 7712–7722 (2012)

    Article  CAS  Google Scholar 

  44. S. Wirths, R. Geiger, N. Diresch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J.M. Hartmann, H. Sigg, J. Faist, D. Buca, D. Grütznacher, Nat. Photonics 9, 88–92 (2015)

    Article  CAS  Google Scholar 

  45. Y. Wang, C. Cong, W. Yang, J. Shang, N. Peimyoo, Y. Chen, J. Kang, J. Wang, W. Huang, T. Yu, Nano Res. 8, 2562–2572 (2015)

    Article  CAS  Google Scholar 

  46. K. Li, Y. Liang, J. Yang, Q. Gao, Y. Zhu, S. Liu, R. Xu, X. Wu, J. Alloys Compd. 695, 238–249 (2017)

    Article  CAS  Google Scholar 

  47. D. Li, Z.D. Wu, C.S. Xing, D.L. Jiang, M. Chen, W.D. Shi, S.Q. Yuan, J. Mol. Catal. A 395, 261–268 (2014)

    Article  CAS  Google Scholar 

  48. B. Peng, S. Zhang, S. Yang, H. Wang, H. Yu, S. Zhang, F. Peng, Mater. Res. Bull. 56, 19–24 (2014)

    Article  CAS  Google Scholar 

  49. F. Li, Q. Wang, X. Wang, B. Li, Y. Hao, R. Liu, D. Zhao, Appl. Catal. B 150, 574–584 (2014)

    Article  CAS  Google Scholar 

  50. S.F. Chen, Y.F. Hu, S.G. Meng, X.L. Fu, Appl. Catal. B 150, 564–573 (2014)

    Article  CAS  Google Scholar 

  51. L. Ye, J. Chen, L. Tian, J. Liu, T. Peng, K. Deng, L. Zan, Appl. Catal. B 130, 1–7 (2013)

    Google Scholar 

  52. Q. Qin, Y. Guo, D. Zhou, Y. Yang, Y. Guo, Appl. Surf. Sci. 390, 765–777 (2016)

    Article  CAS  Google Scholar 

  53. C.C. Chen, W.H. Ma, J.C. Zhao, Chem. Soc. Rev. 39, 4206–4219 (2010)

    Article  CAS  Google Scholar 

  54. H.J. Lu, L.L. Xu, B. Wei, M.Y. Zhang, H. Gao, W.J. Sun, Appl. Surf. Sci. 303, 360–366 (2014)

    Article  CAS  Google Scholar 

  55. T.B. Li, G. Chen, C. Zhou, Z.Y. Shen, R.C. Jin, J.X. Sun, Dalton Trans. 40, 6751–6758 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21571162)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujun Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2485 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Z., Li, K., Yuan, T. et al. Facile synthesis of BiOCl/g-C3N4 heterojunction via in situ hydrolysis of Bi nanospheres: a high-efficiency visible-light-driven photocatalyst. J Mater Sci: Mater Electron 32, 9972–9989 (2021). https://doi.org/10.1007/s10854-021-05655-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05655-6

Navigation