Skip to main content

Advertisement

Log in

Formation and nanomechanical properties of intermetallic compounds in electrodeposited Cu–Sn–Co multilayers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The properties of the intermetallic compounds (IMCs) formed at the interface between the solder and the Under Bump Metallization (UBM) are crucial for the reliability of solder joints. Cobalt (Co) is a potential candidate for UBM since it can act as a diffusion barrier and hence can improve the performance of tin-based solder joints. Growth kinetics, mechanism of formation, and properties of IMC in the copper-tin-cobalt (Cu–Sn–Co) system that is encountered with Co UBM are presented in this paper. Cu–Sn–Co systems were prepared by electrodeposition of Cu, Sn and Co multilayers on Cu substrates followed by reflow at 250 °C for varying durations (1–30 min). Microscopic observation revealed the formation of defect-free (Co,Cu)Sn3, crack-containing (Cu,Co)6Sn5 and thin irregular Cu3Sn IMCs after 1 min reflow. As reflow duration increased, (Co,Cu)Sn3 and Cu3Sn grew at the expense of (Cu, Co)6Sn5. The consumption of the entire Sn layer after 1 min and the calculated effective interdiffusion coefficient of (Co,Cu)Sn3 suggested that the growth of (Co,Cu)Sn3 after 1 min is controlled by solid-state diffusion of Sn. The average Young’s Modulus values of (Co,Cu)Sn3, (Cu,Co)6Sn5 and Cu3Sn are 99.5 ± 3.2 GPa, 110.8 ± 7.3 GPa and 109.4 ± 0.3 GPa, respectively, while the nanohardness values are 4.15 ± 0.34 GPa, 6.74 ± 0.62 GPa and 4.96 ± 1.09 GPa, respectively. Increasing the reflow duration in the Cu–Sn–Co system is expected to improve the performance of the solder joint, through the replacement of the crack-containing (Cu,Co)6Sn5 by the defect-free (Co,Cu)Sn3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W.W. Lee, L.T. Nguyen, G.S. Selvaduray, Microelectron. Reliab. 40, 2 (2000)

    Google Scholar 

  2. K.J. Puttlitz, K.A. Stalter, Handbook of Lead-Free Solder Technology for Microelectronic Assemblies (Marcel Dekker Inc, New York, 2004), pp. 1–12

    Google Scholar 

  3. R. Labie, W. Ruythooren, J.V. Humbeeck, Intermetallics 15, 3 (2007)

    Google Scholar 

  4. G. Vakanas, O. Minho, B. Dimcic, K. Vanstreels, B. Vandecasteele, I.D. Preter, J. Derakhshandeh, K. Rebibis, M. Kajihara, I.D. Wolf, Microelectron. Eng. (2015). https://doi.org/10.1016/j.mee.2015.04.116

    Article  Google Scholar 

  5. N. Odashima, M.O.M. Kajihara, J. Electron. Mater. 49, 2 (2020)

    Google Scholar 

  6. D. Kim, S. Nagao, C.T. Chen, N. Wakasugi, Y. Yamamoto, A. Suetake, T. Takemasa, T. Sugahara, K. Suganuma, IEEE Trans. Power Electron. 36, 5 (2021)

    Google Scholar 

  7. P. Zhang, S.B. Xue, J.H. Wang, Mater. Des. 192, 108726 (2020)

    CAS  Google Scholar 

  8. H. Vafaeenezhad, S.H. Seyedein, M.R. Aboutalebi, A.R. Eivani, O. Nikan, Eng. Failure Anal. 120, 87–95 (2021)

    Google Scholar 

  9. C.-H. Wang, C.-Y. Kuo, J. Mater. Sci. 46, 8 (2011)

    Google Scholar 

  10. Y. Goh, Y.S. Goh, E.L. Lee, M.T. Ong, A.S.M.A. Haseeb, J. Mater. Sci. 29, 7 (2018)

    Google Scholar 

  11. C.-C. Chen, Y.-T. Chan, Intermetallics 18, 4 (2010)

    Google Scholar 

  12. S.-W. Chen, Y.-K. Chen, H.-J. Wu, Y.-C. Huang, C.-M. Chen, J. Electron. Mater. 39, 11 (2010)

    Google Scholar 

  13. G. Humpston, J. Mater. Sci. 21, 6 (2010)

    Google Scholar 

  14. P. Limaye, B. Vandevelde, R. Labie, D. Vandepitte, B. Verlinden, IEEE Trans. Adv. Packag. 31, 1 (2008)

    Google Scholar 

  15. L. Magagnin, V. Sirtori, S. Seregni, A. Origo, P.L. Cavallotti, Electrochim. Acta 50, 23 (2005)

    Google Scholar 

  16. C.-H. Wang, S.-W. Chen, J. Mater. Res. 22, 12 (2007)

    CAS  Google Scholar 

  17. C.-H. Wang, S.-W. Chen, Intermetallics 16, 4 (2008)

    Google Scholar 

  18. C.-H. Wang, C.-Y. Kuo, S.-E. Huang, P.-Y. Li, Intermetallics 32, 57 (2013)

    Google Scholar 

  19. C.-H. Wang, C.-Y. Kuo, J. Electron. Mater. 39, 8 (2010)

    Google Scholar 

  20. V.A. Baheti, S.N. Appl, Science 1, 2 (2019)

    Google Scholar 

  21. F.-Y. Ouyang, G.-L. Hong, Y.-R. Hsu, S.-Y. Mao, W.-J. Liu, Microelectron. Reliab. 97, 16–23 (2019)

    CAS  Google Scholar 

  22. T.T. Kyaw, P. Tunthawiroon, K. Kanlayasiri, K. Yamanaka, A. Chiba, Intermetallics 125, 106875 (2020)

    CAS  Google Scholar 

  23. L. Hou, N. Moelans, J. Derakhshandeh, I. De Wolf, E. Beyne, Sci. Rep. 9, 1 (2019)

    Google Scholar 

  24. C.-H. Wang, C.-Y. Lin, J. Electron. Mater. 48, 7 (2019)

    Google Scholar 

  25. H.-C. Pan, T.-E. Hsieh, J. Electrochem. Soc. 158, 11 (2011)

    Google Scholar 

  26. T. Gupta, Copper Interconnect Technology (Springer, New York, 2010), pp. 16–50

    Google Scholar 

  27. X. Hu, Y. Qiu, X. Jiang, Y. Li, J. Mater. Sci. 29, 18 (2018)

    Google Scholar 

  28. K.N. Tu, Microelectron. Reliab. 51, 3 (2011)

    Google Scholar 

  29. J. Ke, Y. Gao, C. Kao, Y. Wang, Acta Mater. 113, 245–258 (2016)

    CAS  Google Scholar 

  30. C. Ho, R. Tsai, Y. Lin, C. Kao, J. Electron. Mater. 31, 6 (2002)

    Google Scholar 

  31. H.-S. Chun, J.-W. Yoon, S.-B. Jung, J. Alloys Compd. 439, 1–2 (2007)

    Google Scholar 

  32. K. Chan, Z. Zhong, K. Ong, Soldering Surf. Mount Technol. 15, 2 (2003)

    Google Scholar 

  33. Y.-K. Chen, C.-M. Hsu, S.-W. Chen, C.-M. Chen, Y.-C. Huang, Metall. Mater. Trans. A 43, 10 (2012)

    CAS  Google Scholar 

  34. C. Du, X. Wang, S. Tian, J. Mater. Sci. 29, 1 (2018)

    CAS  Google Scholar 

  35. A.S.M.A. Haseeb, T.S. Leng, Intermetallics 19, 5 (2011)

    Google Scholar 

  36. F. Gao, F. Cheng, H. Nishikawa, T. Takemoto, Mater. Lett. 62, 15 (2008)

    Google Scholar 

  37. C.-H. Wang, C.-Y. Kuo, Y.-B. Guo, JOM 71, 9 (2019)

    Google Scholar 

  38. P.Y. Chia, A.S.M.A. Haseeb, J. Mater. Sci. 26, 1 (2015)

    Google Scholar 

  39. Y. Goh, A.S.M.A. Haseeb, M.F.M. Sabri, Soldering Surf. Mount Technol. 25, 2 (2013)

    Google Scholar 

  40. H.-T. Lee, M.-H. Chen, H.-M. Jao, T.-L. Liao, Mater. Sci. Eng. A 358, 1–2 (2003)

    Google Scholar 

  41. S. Tian, J. Zhou, F. Xue, R. Cao, F. Wang, J. Mater. Sci. 29, 19 (2018)

    Google Scholar 

  42. Z. Mei, A.J. Sunwoo, J.W. Morris, Metall. Trans. A 23, 3 (1992)

    Google Scholar 

  43. R.A. Gagliano, M.E. Fine, J. Electron. Mater. 32, 12 (2003)

    Google Scholar 

  44. A. Paul, C. Ghosh, W. Boettinger, Metall. Mater. Trans. A 42, 4 (2011)

    Google Scholar 

  45. W. Zhu, J. Wang, H. Liu, Z. Jin, W. Gong, Mater. Sci. Eng. A 456, 1–2 (2007)

    Google Scholar 

  46. P. Shang, Z. Liu, X. Pang, D. Li, J. Shang, Acta Mater. 57, 16 (2009)

    Google Scholar 

  47. J. Gong, C. Liu, P.P. Conway, V.V. Silberschmidt, Scr. Mater. 60, 5 (2009)

    Google Scholar 

  48. E.L. Lee, Y. Goh, A.S.M.A. Haseeb, J. Mater. Sci. 31, 6 (2020)

    Google Scholar 

  49. S. Kumar, C. Handwerker, M. Dayananda, J. Phase Equilib. Diffus. 32, 309–319 (2011)

    CAS  Google Scholar 

  50. C.-H. Wang, C.-Y. Kuo, Mater. Chem. Phys. 130, 1 (2011)

    Google Scholar 

  51. M.S. Park, R. Arróyave, J. Electron. Mater. 39, 4900–4910 (2010)

    Google Scholar 

  52. C.S. Tan, R.J. Gutmann, L.R. Reif, Wafer Level 3-D ICs Process Technology (Springer, New York, 2009).

    Google Scholar 

  53. T. Laurila, V. Vuorinen, J.K. Kivilahti, Mater. Sci. Eng. R 49, 1 (2005)

    Google Scholar 

  54. G.-Y. Jang, J.-W. Lee, J.-G. Duh, J. Electron. Mater. 33, 10 (2004)

    Google Scholar 

  55. P.-F. Yang, Y.-S. Lai, S.-R. Jian, J. Chen, R.-S. Chen, Mater. Sci. Eng. A 485, 1–2 (2008)

    Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conceptualization and design of this study. Methodology was designed by PYC and YG. Preparation of materials, data collection and formal analysis were performed by YSG. The study was supervised by ASMAH. The first draft of the manuscript was written by YSG and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yingxin Goh or A. S. M. A. Haseeb.

Ethics declarations

Conflict of interest

This work declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goh, Y.S., Goh, Y., Chia, P.Y. et al. Formation and nanomechanical properties of intermetallic compounds in electrodeposited Cu–Sn–Co multilayers. J Mater Sci: Mater Electron 32, 9490–9499 (2021). https://doi.org/10.1007/s10854-021-05612-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05612-3

Navigation