Skip to main content
Log in

Structure evolution and piezoelectric properties of K0.40Na0.60Nb0.95Sb0.05O3–Bi0.5K0.5HfO3–SrZrO3 ternary lead-free ceramics with R–O–T phase boundary

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A conventional ceramic preparation method was used to fabricate the newly designed ternary (K,Na)NbO3-based lead-free ceramics, which have the general formula of (0.97-x)K0.40Na0.60Nb0.95Sb0.05O3–0.03Bi0.5K0.5HfO3xSrZrO3. An X-ray diffraction analysis, together with dielectric-temperature measurements, was performed for determining their phase structures. The crystal structure was found to transition from a rhombohedral-orthogonal phase coexistence to a three-phase coexistence of rhombohedral-orthogonal-tetragonal phases with the increase in SrZrO3 concentration, and then to a rhombohedral-tetragonal phase coexistence, and finally to a single rhombohedral phase. Near the three-phase coexistence zone, the ceramics exhibit an obviously enhanced electrical activity, with an electromechanical coupling coefficient kp = 0.364 and a piezoelectric constant d33 = 280 pC/N. Through a microstructure analysis, a slightly excessive amount of SrZrO3 was found to result in an inhibition for the grain growth of the studied ceramics. These results show that incorporating SrZrO3 into ternary (K,Na)NbO3-based ceramics is still an effective means of constructing phase boundaries and improving the electromechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Hao, W. Li, J. Zhai, H. Chen, Progress in high-strain perovskite piezoelectric ceramics. Mater. Sci. Eng. R 135, 1–57 (2019)

    Article  Google Scholar 

  2. S. Zhang, F. Li, X. Jiang, J. Kim, J. Luo, X. Geng, Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers: a review. Prog. Mater. Sci. 68, 1–66 (2015)

    Article  CAS  Google Scholar 

  3. G.H. Haertling, Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82, 797–818 (1999)

    Article  CAS  Google Scholar 

  4. A.J. Bell, O. Deubzer, Lead-free piezoelectrics: the environmental and regulatory issues. MRS Bull. 43, 581–587 (2018)

    Article  CAS  Google Scholar 

  5. S. Menon, E. George, M. Osterman, M. Pecht, High lead solder (over 85%) solder in the electronics industry: RoHS exemptions and alternatives. J. Mater. Sci.-Mater. El. 26, 4021–4030 (2015)

    Article  CAS  Google Scholar 

  6. M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G.A. Rossetti Jr., J. Rödel, BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl. Phys. Rev. 4, 041305 (2017)

    Article  Google Scholar 

  7. P.K. Panda, B. Sahoo, PZT to lead free piezo ceramics: a review. Ferroelectrics 474, 128–143 (2015)

    Article  CAS  Google Scholar 

  8. J. Li, K. Wang, F. Zhu, L. Cheng, F. Yao, (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. J. Am. Ceram. Soc. 96, 3677–3696 (2013)

    Article  CAS  Google Scholar 

  9. W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, J. Rödel, Giant electric-field-induced strains in lead-free ceramics for actuator applications–status and perspective. J. Electroceram. 29, 71–93 (2012)

    Article  CAS  Google Scholar 

  10. W. Jo, S. Schaab, E. Sapper, L.A. Schmitt, H. Kleebe, A.J. Bell, J. Rödel, On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6mol% BaTiO3. J. Appl. Phys. 110, 074106 (2011)

    Article  Google Scholar 

  11. N. Zhang, T. Zheng, J. Wu, Lead-free (K, Na)NbO3-based materials: preparation techniques and piezoelectricity. ACS Omega 5, 3099–3107 (2020)

    Article  CAS  Google Scholar 

  12. Y. Zhang, J. Li, Review of chemical modification on potassium sodium niobate lead-free piezoelectrics. J. Mater. Chem. C 7, 4284–4303 (2019)

    Article  Google Scholar 

  13. H. Thong, C. Zhao, Z. Zhou, C. Wu, Y. Liu, Z. Du, J. Li, W. Gong, K. Wang, Technology transfer of lead-free (K, Na)NbO3-based piezoelectric ceramics. Mater. Today 29, 37–48 (2019)

    Article  CAS  Google Scholar 

  14. R. Singh, A.R. Kulkarni, C.S. Harendranath, Effect of sintering temperature on composition, microstructure and electrical properties of K0.5Na0.5NbO3 ceramics. Phys. B 434, 139–144 (2014)

    Article  CAS  Google Scholar 

  15. B. Zhang, J. Li, K. Wang, H. Zhang, Compositional dependence of piezoelectric properties in NaxK1-xNbO3 lead-free ceramics prepared by spark plasma sintering. J. Am. Ceram. Soc. 89, 1605–1609 (2006)

    Article  CAS  Google Scholar 

  16. J. Wu, Advances in Lead-Free Piezoelectric Materials (Springer Nature Singapore Pte Ltd., Singapore, 2018).

    Book  Google Scholar 

  17. X. Lv, J. Zhu, D. Xiao, X. Zhang, J. Wu, Emerging new phase boundary in potassium sodium-niobate based ceramics. Chem. Soc. Rev. 49, 671–707 (2020)

    Article  CAS  Google Scholar 

  18. K. Wang, B. Malič, J. Wu, Shifting the phase boundary: Potassium sodium niobate derivates. MRS Bull. 43, 607–611 (2018)

    Article  CAS  Google Scholar 

  19. J. Wu, D. Xiao, J. Zhu, Potassium−sodium niobate lead-free piezoelectric materials: Past, present, and future of phase boundaries. Chem. Rev. 115, 2559–2595 (2015)

    Article  CAS  Google Scholar 

  20. T. Zheng, Y. Zhang, Q. Ke, H. Wu, L.W. Heng, D. Xiao, J. Zhu, S.J. Pennycook, K. Yao, J. Wu, High-performance potassium sodium niobate piezoceramics for ultrasonic transducer. Nano Energy 70, 104559 (2020)

    Article  CAS  Google Scholar 

  21. T. Zheng, H. Wu, Y. Yuan, X. Lv, Q. Li, T. Men, C. Zhao, D. Xiao, J. Wu, K. Wang, J. Li, Y. Gu, J. Zhu, S.J. Pennycook, The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energy Environ. Sci. 10, 528–537 (2017)

    Article  CAS  Google Scholar 

  22. K. Xu, J. Li, X. Lv, J. Wu, X. Zhang, D. Xiao, J. Zhu, Superior piezoelectric properties in potassium–sodium niobate lead-free ceramics. Adv. Mater. 28, 8519–8523 (2016)

    Article  CAS  Google Scholar 

  23. B. Wu, H. Wu, J. Wu, D. Xiao, J. Zhu, S.J. Pennycook, Giant piezoelectricity and high Curie temperature in nanostructured alkali niobate lead-free piezoceramics through phase coexistence. J. Am. Chem. Soc. 138, 15459–15464 (2016)

    Article  CAS  Google Scholar 

  24. X. Wang, J. Wu, D. Xiao, J. Zhu, X. Cheng, T. Zheng, B. Zhang, X. Lou, X. Wang, Giant piezoelectricity in potassium−sodium niobate lead-free ceramics. J. Am. Chem. Soc. 136, 2905–2910 (2014)

    Article  CAS  Google Scholar 

  25. W. Yang, P. Li, S. Wu, F. Li, B. Shen, J. Zhai, Coexistence of excellent piezoelectric performance and thermal stability in KNN-based lead-free piezoelectric ceramics. Ceram. Int. 46, 1390–1395 (2020)

    Article  CAS  Google Scholar 

  26. C. He, X. Bai, J. Wang, Y. Liu, Y. Lu, X. Liu, Y. Xiang, Z. Xu, Y. Chen, Structural, piezoelectric and dielectric properties of K0.4Na0.6NbO3-Bi0.5Li0.5ZrO3-CaZrO3 ternary lead-free piezoelectric ceramics. J. Electron. Mater. 49, 4364–4371 (2020)

    Article  CAS  Google Scholar 

  27. W. Yang, P. Li, S. Wu, F. Li, B. Shen, J. Zhai, A study on the relationship between grain size and electrical properties in (K, Na)NbO3-based lead-free piezoelectric ceramics. Adv. Electron. Mater. 5, 1900570 (2019)

    Article  CAS  Google Scholar 

  28. H. Shi, J. Chen, R. Wang, S. Dong, Full set of material constants of (Na0.5K0.5)NbO3-BaZrO3-(Bi0.5Li0.5)TiO3 lead-free piezoelectric ceramics at the morphotropic phase boundary. J. Alloy. Compd. 655, 290–295 (2016)

    Article  CAS  Google Scholar 

  29. Y. Liu, Y. Yi, Y. Yu, Y. Pan, C. He, X. Liu, Z. Xu, G. Liu, Y. Chen, Microstructures, phase evolution and electrical properties of (1–x)K0.40Na0.60Nb0.96Sb004O3-xBi0.5K0.5HfO3 lead-free ceramics. Ceram. Int. 45, 6328–6334 (2019)

    Article  CAS  Google Scholar 

  30. P. Ren, Z. Liu, M. Wei, L. Liu, J. Shi, F. Yan, H. Fan, G. Zhao, Temperature-insensitive dielectric and piezoelectric properties in (1–x)K0.5Na0.5Nb0.997Cu0.0075O3-xSrZrO3 ceramics. J. Eur. Ceram. Soc. 37, 2091–2097 (2017)

    Article  CAS  Google Scholar 

  31. Y. Zhang, L. Li, B. Shen, J. Zhai, Effect of orthorhombic–tetragonal phase transition on structure and piezoelectric properties of KNN-based lead-free ceramics. Dalton Trans. 44, 7797–7802 (2015)

    Article  CAS  Google Scholar 

  32. H. Du, Y. Huang, H. Tang, H. Qin, W. Feng, Dielectric and piezoelectric properties of SrZrO3-modified (K0.45Na0.51Li0.04)(Nb0.90Ta0.04Sb0.06)O3 lead-free piezoceramics. Mater. Lett. 106, 141–144 (2013)

    Article  CAS  Google Scholar 

  33. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 32, 751–767 (1976)

    Article  Google Scholar 

  34. Y. Pan, X. Dai, J. Li, Y. Yi, Y. Yu, C. He, Y. Liu, Y. Xiang, Y. Chen, Multiphase coexistence and enhanced piezoelectric properties in (1–x)(K0.45Na0.55)(Nb0.965Sb0.035)O3-xBi0.5(K0.91Li0.09)0.5(Hf0.3Zr0.7)O3 lead-free ceramics. Phys. Scr. 95, 065802 (2020)

    Article  CAS  Google Scholar 

  35. Y. Yi, Y. Lu, J. Wang, X. Bai, Y. Pan, Y. Yu, C. He, Y. Liu, Y. Chen, Structure and electrical properties of lead-free (1–x)(K0.45Na0.5Li0.05)Nb0.95Sb0.05O3-x(Ca0.95Ba0.05)(Zr0.9Sn0.1)O3 ceramics. SN Appl. Sci. 2, 775 (2020)

    Article  CAS  Google Scholar 

  36. W. Yao, J. Zhang, C. Zhou, D. Liu, W. Su, Giant piezoelectricity, rhombohedral-orthorhombic-tetragonal phase coexistence and domain configurations of (K, Na)(Nb, Sb)O3–BiFeO3–(Bi, Na)ZrO3 ceramics. J. Eur. Ceram. Soc. 40, 1223–1231 (2020)

    Article  CAS  Google Scholar 

  37. X. Sun, J. Zhang, X. Lv, X. Zhang, Y. Liu, F. Li, J. Wu, Understanding the piezoelectricity of high-performance potassium sodium niobate ceramics from diffused multi-phase coexistence and domain feature. J. Mater. Chem. A 7, 16803–16811 (2019)

    Article  CAS  Google Scholar 

  38. X. Lv, Z. Li, J. Wu, J. Xi, M. Gong, D. Xiao, J. Zhu, Enhanced piezoelectric properties in potassium-sodium niobate-based ternary ceramics. Mater. Des. 109, 609–614 (2016)

    Article  CAS  Google Scholar 

  39. H. Shimizu, H. Guo, S.E. Reyes-Lillo, Y. Mizuno, K.M. Rabe, C.A. Randall, Lead-free antiferroelectric: xCaZrO3-(1–x)NaNbO3 system (0≤ x ≤ 0.10). Dalton Trans. 44, 10763–10772 (2015)

    Article  CAS  Google Scholar 

  40. C. Liu, D. Xiao, T. Huang, J. Wu, F. Li, B. Wu, J. Zhu, Composition induced rhombohedral–tetragonal phase boundary in BaZrO3 modified (K0.445Na0.50Li0.055)NbO3 lead-free ceramics. Mater. Lett. 120, 275–278 (2014)

    Article  CAS  Google Scholar 

  41. N. Setter, L.E. Cross, The role of B-site cation disorder in diffuse phase transition behavior of perovskite ferroelectrics. J. Appl. Phys. 51, 4356–4360 (1980)

    Article  CAS  Google Scholar 

  42. X. Huang, W. Li, J. Zeng, L. Zheng, Z. Man, G. Li, The grain size effect in dielectric diffusion and electrical conduction of PZnTe-PZT ceramics. Phys. B 560, 16–22 (2019)

    Article  CAS  Google Scholar 

  43. S. Huo, S. Yuan, Z. Tian, C. Wang, Y. Qiu, Grain size effects on the ferroelectric and piezoelectric properties of Na0.5K0.5NbO3 ceramics prepared by pechini method. J. Am. Ceram. Soc. 95, 1383–1387 (2012)

    Article  CAS  Google Scholar 

  44. W. Hzez, A. Benali, H. Rahmouni, E. Dhahri, K. Khirouni, B.F.O. Costa, Effects of oxygen deficiency on the transport and dielectric properties of NdSrNbO. J. Phys. Chem. Solids 117, 1–12 (2018)

    Article  CAS  Google Scholar 

  45. M. Maglione, G. Philippot, D. Levasseur, S. Payan, C. Aymonier, C. Elissalde, Defect chemistry in ferroelectric perovskites: long standing issues and recent advances. Dalton Trans. 44, 13411–13418 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Fundamental Research Funds for the Central Universities (No. XDJK2020B003) and Research Project of Chongqing Municipal Education Commission (No. yjg183037). The authors would like to thank Dr. Guannan Li (School of Materials and Energy, Southwest University, China) for her assistance in the Rietveld refinements of XRD data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Pan, Y., Bai, X. et al. Structure evolution and piezoelectric properties of K0.40Na0.60Nb0.95Sb0.05O3–Bi0.5K0.5HfO3–SrZrO3 ternary lead-free ceramics with R–O–T phase boundary. J Mater Sci: Mater Electron 32, 9032–9043 (2021). https://doi.org/10.1007/s10854-021-05573-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05573-7

Navigation