Skip to main content

Advertisement

Log in

Characterization, dielectric properties, and mechanical properties of cyanate epoxy composites modified by KH550-AlOOH@GO

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) was obtained by improved Hummers method; the pseudoboehmite (AlOOH) nanoparticles were prepared with aluminum isopropoxide by Sol–Gel method and modified by the silane coupling agent (KH-550) to get KH550-AlOOH. GO was coated by KH550-AlOOH to gain KH550-AlOOH@GO component. In the meantime, the matrix (E51-BCE) was synthesized from epoxy resin (E51) and bisphenol A cyanate (BCE). KH550-AlOOH@GO/E51-BCE composites were prepared via in situ polymerization, E51-BCE as the matrix and KH550-AlOOH@GO as the reinforcement. The micro-morphology of KH550-AlOOH@GO was investigated by Fourier transform infrared spectrometer (FT-IR) and transmission electron microscope (TEM), and the results showed that KH550-AlOOH was well distributed on the GO sheet and with abundant hydroxyl groups on its surface. The X-ray diffraction (XRD) and scanning electron microscope (SEM) of KH550-AlOOH@GO/E51-BCE composites indicated that KH550-AlOOH@GO was uniformly dispersed in E51-BCE matrix and there was a good interaction between them, which was conducive to the performances of the composite material. Mechanical and dielectric properties of composite also were tested and analyzed. The highest bending strength, bending modulus, and impact strength of KH550-AlOOH@GO/E51-BCE composites were 158.23 MPa, 2.37 GPa, and 46.96 kJ/m2, respectively, when the content of KH550-AlOOH@GO was 0.6 wt%, which were 15.72%, 22.42%, and 198.22% higher than those of the matrix resin, respectively. The dielectric constant and dielectric loss of the composite were 3.12 and 0.0027 at 100 Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. P.C. Ma, C.T. Dai, S.H. Jiang, Thioetherimide-modified cyanate ester resin with better molding performance for glass fiber reinforced composites. Polymers 11(9), 1458 (2019)

    Article  CAS  Google Scholar 

  2. Z.J. Zhang, W.W. Xu, L. Yuan et al., Flame-retardant cyanate ester resin with suppressed toxic volatiles based on environmentally friendly halloysite nanotube/graphene oxide hybrid. J. Appl. Polym. Sci. 135(31), 46587 (2018)

    Article  Google Scholar 

  3. L. Tang, J.L. Zhang, Y.H. Tang et al., Polymer matrix wave-transparent composites: a review. J. Mater. Sci. Technol. 75, 225–251 (2021)

    Article  Google Scholar 

  4. L. Tang, J. Dang, M.K. He et al., Preparation and properties of cyanate-based wave-transparent laminated composites reinforced by dopamine/POSS functionalized Kevlar cloth. Compos. Sci. Technol. 169, 120–126 (2019)

    Article  CAS  Google Scholar 

  5. N. Tian, R.C. Ning, J. Kong, Self-toughening of epoxy resin through controlling topology of cross-linked networks. Polymer 99, 376–385 (2016)

    Article  CAS  Google Scholar 

  6. L. Tang, J.L. Zhang, J.W. Gu, Random copolymer membrane coated PBO fibers with significantly improved interfacial adhesion for PBO fibers/cyanate ester composites. Chin. J. Aeronaut. (2020)

  7. Y. Zhu, H. Wang, L. Yan et al., Preparation and tribological properties of 3D network polymer-based nanocomposites reinforced by carbon nanofibers. Wear 356, 101–109 (2016)

    Article  Google Scholar 

  8. N. Tian, H.W. Huang, Y. He et al., Mediator-free direct Zscheme photocatalytic system: BiVO4/g-C3N4 organic-inorganic hybrid photocatalyst with highly efficient visible-light-induced photocatalytic activity. Dalton Trans. 44(9), 4297 (2015)

    Article  CAS  Google Scholar 

  9. X.T. Shi, R.H. Zhang, K.P. Ruan, et al., Improvement of thermal conductivities and simulation model for glass fabrics reinforced epoxy laminated composites via introducing hetero-structured BNN-30@BNNS fillers. J. Mater. Sci. Technol. (2021)

  10. X.T. Yang, X. Zhong, J.L. Zhang et al., Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance. J. Mater. Sci. Technol. 68(30), 209–215 (2021)

    Article  Google Scholar 

  11. Y. Lei, M. Xu, M. Jiang et al., Curing behaviors of cyanate ester/epoxy copolymers and their dielectric properties. High Perform Polym. 29, 1175–1184 (2016)

    Article  Google Scholar 

  12. H. Li, J. Gu, C. Liu et al., Thermal and mechanical properties of cyanate ester resin modified with acid-treated multiwalled carbon nanotubes. High Perform Polym. 30, 38–46 (2016)

    Article  Google Scholar 

  13. G.L. Wu, Y.H. Cheng, K.K. Wang et al., Fabrication and characterization of OMMt/BMI/CE composites with low dielectric properties and high thermal stability for electronic packaging. J. Mater. Sci. 27(6), 5592–5599 (2016)

    CAS  Google Scholar 

  14. A. Kundu, S. Nandi, P. Das et al., Fluorescent graphene oxide via polymergrafting: an efficient nanocarrier for both hydrophilic and hydrophobic drugs. ACS Appl. Mater. Interfaces. 7(6), 3512–3523 (2015)

    Article  CAS  Google Scholar 

  15. A. Lerf, H. He, M. Forster et al., Structure of graphite oxide revisited. J. Phys. Chem. B 102(23), 4477–4482 (1998)

    Article  CAS  Google Scholar 

  16. S.I. Abdullah, M.N.M. Ansari, Preparation and characterization of electrical properties of graphene oxide (GO)/epoxy composites. Mater. Today 20(4), 474–477 (2020)

    CAS  Google Scholar 

  17. L. Wang, X.T. Shi, J.L. Zhang et al., Lightweight and robust rGO/sugarcane derived hybrid carbon foams with outstanding EMI shielding performance. J. Mater. Sci. Technol. 52, 119–126 (2020)

    Article  CAS  Google Scholar 

  18. P. Song, H. Qiu, L. Wang et al., Honeycomb structural rGO-MXene/epoxy nanocomposites for superior electromagnetic interference shielding performance. Sustain. Mater. Technol. 24, e00153 (2020)

    CAS  Google Scholar 

  19. G.L. Wu, Y.H. Cheng, Z.D. Wang et al., In situ polymerization of modified graphene/polyimide composite with improved mechanical and thermal properties. J. Mater. Sci. 28(1), 576–581 (2017)

    CAS  Google Scholar 

  20. F. Ren, G.M. Zhu, P.G. Ren et al., In situ polymerization of graphene oxide and cyanate ester–epoxy with enhanced mechanical and thermal properties. Appl. Surf. Sci. 316, 549–557 (2014)

    Article  CAS  Google Scholar 

  21. X.W. Zhao, C.G. Zang, Y.Q. Wen et al., Thermal and mechanical properties of liquid Ansilicone rubber composites filled with functionalized graphene oxide. J Appl. Polym. Sci. 132(38), 172–179 (2015)

    Article  Google Scholar 

  22. Y.F. Chen, Y.Z. Wu, C.B. Geng et al., Curing kinetics and the properties of KH560-SiO2/polyethersulfone/bismaleimide-phenolic epoxy resin composite. J. Inorg. Organomet. Polym Mater. 30(5), 1735–1743 (2020)

    Article  CAS  Google Scholar 

  23. B. Ramezanzadeh, Z. Haeri, M. Ramezanzadeh, A facile route of making silica nanoparticles-covered graphene oxide nanohybrids (SiO2-GO); fabrication of SiO2-GO/epoxy composite coating with superior barrier and corrosion protection performance. Chem. Eng. J. 303, 511–528 (2016)

    Article  CAS  Google Scholar 

  24. J.W. Gu, Q.Y. Zhang, H.C. Li et al., Study on preparation of SiO2/epoxy resin hybrid materials by means of sol-gel. Polymer 46(12), 1129–1134 (2007)

    CAS  Google Scholar 

  25. P.W. Zhu, L. Weng, X.R. Zhang et al., Enhanced dielectric performance of TPU composites filled with Graphene@poly(dopamine)-Ag core-shell nanoplatelets as fillers. Polym. Test. 90, 106671 (2020)

    Article  CAS  Google Scholar 

  26. L. Weng, L. Yan, H. Li et al., Synthesis of Ag@ Al2O3 core-shell structure nanoparticles and their enhancement effect on dielectric properties for Ag@ Al2O3/polyimide nanocomposites. J. Wuhan Univ. Technol. 30(1), 47–50 (2015)

    Article  CAS  Google Scholar 

  27. A.L. Feng, M.L. Ma, Z.R. Jia et al., Fabrication of NiFe2O4@carbon fiber coated with phytic acid-doped polyaniline composite and its application as an electromagnetic wave absorber. RSC Adv. 9, 25932 (2019)

    Article  CAS  Google Scholar 

  28. Y.F. Chen, Z.G. Li, Y.L. Liu et al., Curing Mechanism and Mechanical Properties of Al2O3/Cyanate Ester-Epoxy Composites. J. Electron. Mater. 49(2), 1473–1481 (2020)

    Article  CAS  Google Scholar 

  29. T. Shi, X.Z. Guo, H. Yang, Preparation and characterization of transparent boehmite (γ-AlOOH) sol. Rare Metal Mater. 37, 73–75 (2008)

    Google Scholar 

  30. G. Hayase, K. Nonomura, G. Hasegawa et al., Ultralow-density, transparent, superamphiphobic boehmite nanofiber aerogels and their alumina derivatives. Chem. Mater. 27(1), 3–5 (2015)

    Article  CAS  Google Scholar 

  31. Z. Su, H. Wang, K.H. Tian et al., Simultaneous reduction and surface functionalization of graphene oxide with wrinkled structure by Diethylenetriamine (DETA) and their reinforcing effects in the flexible Poly(2-Ethylhexyl Acrylate) (P2EHA) films. . Compos. Appl. Sci. Manuf. 84, 64–75 (2015)

    Article  Google Scholar 

  32. Y.F. Chen, Y.Z. Wu, G.Q. Dai et al., Effect of functionalized graphene on mechanical properties and dielectric constant of bismaleimide composites. J. Mater. Sci. 30(6), 6234–6241 (2019)

    CAS  Google Scholar 

  33. H.Y. Wei, J. Xia, W.L. Zhou et al., Adhesion and cohesion of epoxy-based industrial composite coatings. Composites B Eng. 193, 108035 (2020)

    Article  CAS  Google Scholar 

  34. C. Pan, K.C. Kou, Y. Zhang et al., Enhanced through-plane thermal conductivity of PTFE composites with hybrid fillers of hexagonal boron nitride platelets and aluminum nitride particles. Composites B 153, 1–8 (2018)

    Article  CAS  Google Scholar 

  35. J. Zaragoza, S. Fukuoka, M. Kraus et al., Exploring the role of nanoparticles in enhancing mechanical properties of hydrogel nanocomposites. Nanomaterials 8(11), 882 (2018)

    Article  Google Scholar 

  36. M. Giovino, J. Pribyl, B. Benicewicz et al., Mechanical properties of polymer grafted nanoparticle composites. Nanocomposites. 4(4), 1–8 (2018)

    Article  Google Scholar 

  37. L. Weng, L.W. Yan, H.X. Li et al., Fabrication of Ag-nanorods/polyimide nanocomposites and their thermal, mechanical, electrical, and dielectric properties. J. Nanosci. Nanotechnol. 16(2), 1638–1644 (2016)

    Article  CAS  Google Scholar 

  38. L.H. Lee, J.F. Mandell, F.J. McGarry, Fracture toughness and crack instability in tough polymers under plane strain conditions. Polym. Eng. Sci. 27(15), 1128–1136 (1987)

    Article  CAS  Google Scholar 

  39. J.K. Chen, Z.P. Huang, J. Zhu, Size effect of particles on the damage dissipation in nanocomposites. Compos. Sci. Technol. 14, 2990–2996 (2007)

    Article  Google Scholar 

  40. E.S. Abdul Rashid, N. Muhd Julkapli, W.A. Yehye, Nanocellulose reinforced as green agent in polymer matrix composites applications. Polym. Adv. Technol. 29(6), 1531–1546 (2018)

    Article  CAS  Google Scholar 

  41. G.H. Michlera, H.-H. von Schmeling, The physics and micro-mechanics of nano-voids and nano-particles in polymer combinations. Polymer 54(13), 3131–3144 (2013)

    Article  Google Scholar 

  42. Z.J. Wu, S. Gao, L. Chen et al., Electrically insulated epoxy nanocomposites reinforced with synergistic core-shell SiO2@MWCNTs and montmorillonite bifillers. Macromol. Chem. Phys. 218(23), 1700357 (2017)

    Article  Google Scholar 

  43. L.Z. Guan, L. Weng, Q. Li et al., Design and preparation of ultra-thin 2D Ag-NiMOF ferroelectric nanoplatelets for PVDF based dielectric composites. Mater. Des. 197, 109241 (2021)

    Article  CAS  Google Scholar 

  44. L. Wan, X. Zhang, G.L. Wu et al., Study on thermal conductivity and dielectric properties of bismaleimide/cyanate ester copolymer. High Volt. 2(3), 167–171 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their appreciation to the project support by the National Natural Science Foundation of China (Grant No. 51603057) and the Harbin technology bureau subject leader (Grant No. 2015RAXXJ029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufei Chen.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Chen, Y., Zhao, H. et al. Characterization, dielectric properties, and mechanical properties of cyanate epoxy composites modified by KH550-AlOOH@GO. J Mater Sci: Mater Electron 32, 8890–8902 (2021). https://doi.org/10.1007/s10854-021-05561-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05561-x

Navigation