Skip to main content

Advertisement

Log in

Densification and fine-grain formation mechanisms of BaTiO3 ceramics consolidated by self-assembly sintering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, from the perspective of thermodynamics and kinetics, we have studied the mechanism of balancing the densification and grain growth via cosintering the micron and nanopowders, also known as self-assembly sintering. In the experiment, the 200-nm and 80-nm BaTiO3 spherical powders were used as models for combination and cosintering. In terms of thermodynamics, the contact angle method is applied to determine the free energy of the binary particle size system. The surface free energy of 200-nm and 80-nm BaTiO3 powders is 51.66 J/mol and 203.47 J/mol, respectively. When the powder ratio is 1:1, the surface free energy of the binary particle size system is 127.56 J/mol, which is the reason for the balance between densification and grain growth. In terms of kinetics, the Arrhenius equation was utilized to calculate the apparent activation energy (Q) of the binary particle size system. The results show that the value of Q is 360 kJ/mol at 1000 °C. The fine-grained ceramics with high relative density obtained by this sintering method at a low sintering temperature (1000 °C) can be explained by the relative low value of Q.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.L. Li, F. Li, Z. Xu, S.J. Zhang, Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency. Adv. Mater. 30(32), 1802155.1-1802155.7 (2018)

    Google Scholar 

  2. X.H. Hao, A review on the dielectric materials for high energy-storage application. J. Adv. Die. 3(1), 1330001–1330014 (2013)

    Article  Google Scholar 

  3. M.X. Zhou, R.H. Liang, Z.Y. Zhou, X.L. Dong, Novel BaTiO3-based lead-free ceramic capacitors featuring high energy storage density, high power density, and excellent stability. J. Mater. Chem. C 6(31), 8528–8537 (2018)

    Article  CAS  Google Scholar 

  4. G. Wang, J.L. Li, X. Zhang, Z.M. Fan, F. Yang, A. Feteira, D. Zhou, D.C. Sinclair, T. Ma, X.L. Tan, D.W. Wang, I.M. Reaney, Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity. Energ. Environ. Sci. 12(2), 582–588 (2019)

    Article  CAS  Google Scholar 

  5. Y.H. Huang, Y.J. Wu, B. Liu, T.N. Yang, J.J. Wang, J. Li, L.Q. Chen, X.M. Chen, From core-shell Ba0.4Sr0.6TiO3@SiO2 particles to dense ceramics with high energy storage performance by spark plasma sintering. J. Mater. Chem. A 6(10), 4477–4484 (2018)

    Article  CAS  Google Scholar 

  6. C.J. Xiao, Z.H. Chi, S.M. Feng, F.Y. Li, L.C. Chen, C.Q. Jin, X.H. Wang, L.T. Li, R.Z. Chen, Ferroelectricity of 30 nm BaTiO3 ceramics prepared by high pressure sintering. J. Electroceram. 21(1–4), 39–42 (2008)

    Article  CAS  Google Scholar 

  7. N.E. Horr, Z. Valdez-Nava, C. Tenailleau, S. Guillemet-Fritscha, Microstructure of Ba1−xLaxTiO3−δ ceramics sintered by spark plasma sintering. J. Eur. Ceram. Soc. 31(6), 1087–1096 (2011)

    Article  Google Scholar 

  8. H. Guo, J. Guo, A. Baker, C.A. Randall, Hydrothermal-assisted cold sintering process: a new guidance for low-temperature ceramic sintering. ACS Appl. Mater. Inter. 8(32), 20909–20915 (2016)

    Article  CAS  Google Scholar 

  9. N.J. Lóh, L. Simão, C.A. Faller, A.D. NoniJr, O.R.K. Montedo, A review of two-step sintering for ceramics. Ceram. Int. 42(11), 12556–12572 (2016)

    Article  Google Scholar 

  10. N. Yu, Y. Hidehiro, U. Akinori, T. Tokunaga, K. Sasaki, T. Yamamoto, Electric-current-controlled synthesis of BaTiO3. J. Am. Ceram. Soc. 100(9), 3843–3850 (2017)

    Article  Google Scholar 

  11. T.K. Hyun, H.H. Young, Sintering of nanocrystalline BaTiO3. Ceram. Int. 30(7), 1719–1723 (2004)

    Article  Google Scholar 

  12. M. Legallais, S. Fourcade, U.C. Chung, D. Michau, M. Maglione, F. Mauvy, C. Elissalde, Fast re-oxidation kinetics and conduction pathway in spark plasma sintered ferroelectric ceramics. J. Eur. Ceram. Soc. 38(2), 543–550 (2018)

    Article  CAS  Google Scholar 

  13. M.Q. Xie, Y.X. Che, K. Liu, L.X. Jiang, L.M. Xue, Caking-inspired cold sintering of plastic supramolecular films as multifunctional platforms. Adv. Funct. Mater. 28(36), 1803370.1-1803370.8 (2018)

    Google Scholar 

  14. J. Guo, H.Z. Guo, A.L. Baker, M.T. Lanagan, E.R. Kupp, G.L. Messing, C.A. Randall, Cold sintering: a paradigm shift for processing and integration of ceramics. Angew. Chem. Int. Edit. 128(38), 11629–11633 (2016)

    Article  Google Scholar 

  15. H. Guo, A. Baker, J. Guo, M.T. Lanagan, E.R. Kupp, G.L. Messing, C.A. Randall, Cold sintering process: a novel technique for low-temperature ceramic processing of ferroelectrics. J. Am. Ceram. Soc. 99(11), 3489–3507 (2016)

    Article  CAS  Google Scholar 

  16. Y. Huan, X.H. Wang, J. Fang, L.T. Li, Grain size effects on piezoelectric properties and domain structure of BaTiO3 ceramics prepared by two step sintering. J. Am. Ceram. Soc. 96(11), 3369–3371 (2013)

    Article  CAS  Google Scholar 

  17. Y. Huan, X.H. Wang, J. Fang, L.T. Li, Grain size effect on piezoelectric and ferroelectric properties of BaTiO3 ceramics. J. Eur. Ceram. Soc. 34(5), 1445–1448 (2014)

    Article  Google Scholar 

  18. D. Tingaud, P. Jenei, A. Krawczynska, F. Mompiou, J. Gubicza, G. Dirras, Investigation of deformation micro-mechanisms in nickel consolidated from a bimodal powder by spark plasma sintering. Mater. Charact. 99, 118–127 (2015)

    Article  CAS  Google Scholar 

  19. Y.C. Shan, Z.H. Zhang, X.N. Sun, J.J. Xu, Q.H. Qin, J.T. Li, Fast densification mechanism of bimodal powder during pressureless sintering of transparent AlON ceramics. J. Eur. Ceram. Soc. 36(3), 671–678 (2016)

    Article  CAS  Google Scholar 

  20. Y. Hirata, H. Fujita, T. Shimonosono, Compressive mechanical properties of partially sintered porous alumina of bimodal particle size system. Ceram. Int. 43(2), 1895–1903 (2017)

    Article  CAS  Google Scholar 

  21. J.W. Oh, Y.J. Seong, D.S. Shin, S.J. Park, Investigation and two-stage modeling of sintering behavior of nano/micro-bimodal powders. Powder Technol. 352(15), 42–52 (2019)

    Article  CAS  Google Scholar 

  22. H.Y. Xu, J. Zou, W.M. Wang, H. Wang, W. Ji, Z.Y. Fu, Densification mechanism and microstructure characteristics of nano- and micro- crystalline alumina by high-pressure and low temperature sintering. J. Eur. Ceram. Soc. 41(1), 635–645 (2021)

    Article  CAS  Google Scholar 

  23. X.Y. Zhai, Y.J. Chen, Y.Q. Ma, S.C. Sun, J.X. Liu, A new strategy of binary-size particles model for fabricating fine grain, high density and low resistivity ITO target. Ceram. Int. 46(9), 13660–13668 (2020)

    Article  CAS  Google Scholar 

  24. Q. Jin, B. Cui, X.T. Zhang, J. Wang, A binary particle self-assembly sintering method to realize controllable synthesis of fine-grained barium titanate ceramics. J. Electron. Mater. 50(1), 325–335 (2021)

    Article  CAS  Google Scholar 

  25. Y. Yang, L. Gao, G.P. Lopez, B.B. Yellen, Tunable assembly of colloidal crystal alloys using magnetic nanoparticle fluids. ACS Nano 7(3), 2705–2716 (2013)

    Article  CAS  Google Scholar 

  26. A.A. Shah, M. Ganesan, J. Jocz, M.J. Solomon, Direct current electric field assembly of colloidal crystals displaying reversible structural color. ACS Nano. 8(8), 8095–8103 (2014)

    Article  CAS  Google Scholar 

  27. H. Cong, B. Yu, J. Tang, Z.J. Li, X.S. Liu, Current status and future developments in preparation and application of colloidal crystals. Chem. Soc. Rev. 42(19), 7774–7800 (2013)

    Article  CAS  Google Scholar 

  28. H.P. Ding, Z.K. Zhao, J.S. Jin, L. Deng, P. Gong, X.Y. Wang, Densification mechanism of Zr-based bulk metallic glass prepared by two-step spark plasma sintering. J. Alloy. Compd. 850, 156724–156736 (2021)

    Article  CAS  Google Scholar 

  29. A. Ndayishimiye, M.Y. Sengul, S.H. Bang, K. Tsuji, K. Takashima, T.H. Beauvoir, D. Denux, J.M. Thibaud, A.C.T. Duin, C. Elissalde, G. Goglio, C.A. Randall, Comparing hydrothermal sintering and cold sintering process: Mechanisms, microstructure, kinetics and chemistry. J. Eur. Ceram. Soc. 40(4), 1312–1324 (2020)

    Article  CAS  Google Scholar 

  30. J.M. Liu, H. Rongxia, R.B. Zhang, G.H. Liu, X.L. Wang, Z.D. Jia, L.M. Wang, Mechanism of flash sintering with high electric field: In the view of electric discharge and breakdown. Scripta Mater. 187, 93–96 (2020)

    Article  CAS  Google Scholar 

  31. M. Haug, F. Bouvill, C. Ruiz-Agudo, J. Avaro, D. Gebauer, A.R. Studart, Cold densification and sintering of nanovaterite by pressing with water. J. Eur. Ceram. Soc. 40(3), 893–900 (2020)

    Article  CAS  Google Scholar 

  32. H. Guo, A. Baker, J. Guo, C.A. Randall, Cold sintering process: a novel technique for low-temperature ceramic processing of ferroelectrics. J. Am. Ceram. Soc. 99(11), 3489–3507 (2016)

    Article  CAS  Google Scholar 

  33. A. Kozbia, Z.T. Li, C. Conaway, R. McGinley, S. Dhingra, V. Vahdat, F. Zhou, B. D’Urso, H.T. Liu, L. Li, Study on the surface energy of graphene by contact angle measurements. Langmuir 30(28), 8598–8606 (2014)

    Article  Google Scholar 

  34. S. Moradi, P. Englezos, S.G. Hatzikiriakos, Contact angle hysteresis of non-flattened top micro/nanostructures. Langmuir 30(11), 3274–3284 (2014)

    Article  CAS  Google Scholar 

  35. X.Y. Kang, R. Floyd, S. Lowum, M. Cabral, E. Dickey, J.P. Maria, Mechanism studies of hydrothermal cold sintering of zinc oxide at near room temperature. J. Am. Ceram. Soc. 102(8), 4459–4469 (2019)

    Article  CAS  Google Scholar 

  36. Y. Hotta, C. Duran, K. Sato, T. Nagaoka, K. Watari, Densification and grain growth in BaTiO3 ceramics fabricated from nanoparticles synthesized by ball-milling assisted hydrothermal reaction. J. Eur. Ceram. Soc. 28(3), 599–604 (2008)

    Article  CAS  Google Scholar 

  37. L. Balice, M. Cologna, F. Audubert, J.L. Hazemann, Densification mechanisms of UO2 consolidated by spark plasma sintering. J. Eur. Ceram. Soc. 41(1), 719–728 (2021)

    Article  CAS  Google Scholar 

  38. J.P. Maria, X.Y. Kang, R.D. Floyd, E.C. Dickey, Cold sintering: current status and prospects. J. Materi. Res. 32(17), 1–4 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21071115), the Shaanxi Natural Science Foundation (Grant No. 2020JZ-44) and the Key Science and Technology Innovation Team of Shaanxi Province (Grant No. 2019TD-007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Cui.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 441 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Q., Zhao, L., Zhang, X. et al. Densification and fine-grain formation mechanisms of BaTiO3 ceramics consolidated by self-assembly sintering. J Mater Sci: Mater Electron 32, 8043–8053 (2021). https://doi.org/10.1007/s10854-021-05527-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05527-z

Navigation