Skip to main content

Advertisement

Log in

Ag-doped As–S–Se chalcogenide glasses: a correlative study of structural and dielectrical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work is focused on investigating the effect of Ag doping on the dielectric and structural properties of the As–S–Se glass system and their suitability for potential applications in optoelectronics, such as electronic and switching components. A series of glasses from the system Agx(As40S30Se30)100−x (x ≤ 5 at.% Ag) were prepared with melt-quenching technique. Morphological and compositional analysis was performed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Raman spectroscopy measurements have shown structural modifications of the glass network upon Ag doping, with creation of new Ag–(S,Se)–As structures, resulting in increased number of defect states. Variations in dielectric permittivity (ε′) and dielectric loss (ε″) were investigated in a wide frequency and temperature range, and explained by dominant dipolar and electronic polarization, as well as correlated with the observed structural changes. Improvement in dielectric properties is observed upon doping with Ag. Furthermore, the low dielectric tangent loss at high frequencies for all glassy samples points to a beneficial ability of the material to absorb energy of the external electric field. Good thermal stability of these glasses is confirmed by the calculated temperature coefficient of the dielectric permittivity. Density of localized states in all glasses was determined from AC conductivity and the dielectric tangent loss using a correlated barrier hopping model, and found to increase with Ag concentration. The overall results suggest that Ag doping enhances the electrical and optical quality of this type of glasses, making them suitable as nonlinear optical materials and their applications in devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. X.-H. Zhang, J.-L. Adam, B. Bureau, in Springer Handbook of Glass. ed. by J.D. Musgraves, J. Hu, L. Calvez (Springer, Cham, 2019), pp. 525–552

  2. A. Viswanathan, S. Thomas, J. Alloys Compd. 798, 424 (2019)

    Article  CAS  Google Scholar 

  3. R.P. Wang, Amorphous Chalcogenides: Advances and Applications (CRC Press, Boca Raton, 2014).

    Book  Google Scholar 

  4. M. Yamane, Y. Asahara, Glasses for Photonics (Cambridge University Press, Cambridge, 2000).

    Book  Google Scholar 

  5. R. Svoboda, D. Brandová, J. Alloys Compd. 770, 564 (2019)

    Article  CAS  Google Scholar 

  6. D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, M. Wuttig, Nat. Mater. 7, 972 (2008)

    Article  CAS  Google Scholar 

  7. M. Wuttig, N. Yamada, Nat. Mater. 6, 824 (2007)

    Article  CAS  Google Scholar 

  8. H.F. Hamann, M. O’Boyle, Y.C. Martin, M. Rooks, H.K. Wickramasinghe, Nat. Mater. 5, 383 (2006)

    Article  CAS  Google Scholar 

  9. G.K. Ahluwalia (ed.), Applications of Chalcogenides: S, Se, and Te (Springer, Berlin, 2017)

    Google Scholar 

  10. B.J. Eggleton, B. Luther-Davies, K. Richardson, Nat. Photonics 5, 141 (2011)

    Article  CAS  Google Scholar 

  11. A. Zakery, S.R. Elliott, J. Non-Cryst. Solids 330, 1 (2003)

    Article  CAS  Google Scholar 

  12. A.B. Seddon, J. Non-Cryst. Solids 184, 44 (1995)

    Article  CAS  Google Scholar 

  13. Y. Wu, M. Meneghetti, J. Troles, J.-L. Adam, Appl. Sci. 8, 1637 (2018)

    Article  CAS  Google Scholar 

  14. M. Frumar, B. Frumarova, T. Wagner, in Comprehensive Semiconductor Science and Technology. ed. by P. Bhattacharya, R. Fornari, H. Kamimura (Elsevier, Amsterdam, 2011), pp. 206–261

    Chapter  Google Scholar 

  15. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, K. Richardson, Opt. Express 15, 2307 (2007)

    Article  CAS  Google Scholar 

  16. J.-F. Viens, C. Meneghini, A. Villeneuve, T.V. Galstian, E.J. Knystautas, M.A. Duguay, K.A. Richardson, T. Cardinal, J. Lightwave Technol. 17, 1184 (1999)

    Article  CAS  Google Scholar 

  17. A. Ganjoo, H. Jain, C. Yu, R. Song, J.V. Ryan, J. Irudayaraj, Y.J. Ding, C.G. Pantano, J. Non-Cryst. Solids 352, 584 (2006)

    Article  CAS  Google Scholar 

  18. X. Zhang, B. Bureau, P. Lucas, C. Boussard-Pledel, J. Lucas, Chemistry 14, 432–442 (2008)

    Article  CAS  Google Scholar 

  19. J.S. Sanghera, L.B. Shaw, I.D. Aggarwal, IEEE J. Sel. Top. Quantum Electron. 15, 114 (2009)

    Article  CAS  Google Scholar 

  20. A.R. Hilton, S. Kemp, Chalcogenide Glasses for Infrared Optics (McGraw-Hill Education, New York, 2010).

    Google Scholar 

  21. M.F. Churbanov, V.G. Plotnichenko, in Semiconductors and Semimetals, ed. by R. Fairman, B. Ushkov (Elsevier, Amsterdam, 2004), pp. 209–230

  22. A. Zakery, S.R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and Their Applications (Springer, Berlin, 2007).

    Google Scholar 

  23. T. Kanamori, Y. Terunuma, S. Takahashi, T. Miyashita, J. Light. Technol. 2, 607 (1984)

    Article  Google Scholar 

  24. J.M. Harbold, F.Ö. Ilday, F.W. Wise, J.S. Sanghera, V.Q. Nguyen, L.B. Shaw, I.D. Aggarwal, Opt. Lett. 27, 119 (2002)

    Article  CAS  Google Scholar 

  25. K. Ogusu, K. Shinkawa, Opt. Express 17, 8165 (2009)

    Article  CAS  Google Scholar 

  26. K. Ogusu, J. Yamasaki, S. Maeda, M. Kitao, M. Minakata, Opt. Lett. 29, 265 (2004)

    Article  CAS  Google Scholar 

  27. A. Pradel, M. Ribes, in Chalcogenide Glas, ed. by J.-L. Adam, X. Zhang (Woodhead Publishing, Cambridge, 2014), pp. 169–208

  28. S.A. Girlani, B. Yan, P.C. Taylor, Semiconductors 32, 879 (1998)

    Article  Google Scholar 

  29. K. Tanaka, K. Shimakawa, Amorphous Chalcogenide Semiconductors and Related Materials (Springer, Berlin, 2011).

    Book  Google Scholar 

  30. S.R. Lukić, D.M. Petrović, I.I. Turyanitsa, O.V. Khiminets, J. Mater. Sci. 26, 5517 (1991)

    Article  Google Scholar 

  31. T.J. Carrig, J. Electron. Mater. 31, 759 (2002)

    Article  CAS  Google Scholar 

  32. M. Frumar, T. Wagner, Curr. Opin. Solid State Mater. Sci. 7, 117 (2003)

    Article  CAS  Google Scholar 

  33. J. Orava, T. Wagner, M. Krbal, T. Kohoutek, M. Vlcek, L. Benes, E. Kotulanova, P. Bezdicka, P. Klapetek, M. Frumar, J. Phys. Chem. Solids 68, 1008 (2007)

    Article  CAS  Google Scholar 

  34. C. Zha, A. Smith, A. Prasad, R. Wang, S. Madden, B. Luther-Davies, J. Nonlinear Opt. Phys. Mater. 16, 49 (2007)

    Article  CAS  Google Scholar 

  35. M. Krbal, T. Wagner, T. Srba, J. Schwarz, J. Orava, T. Kohoutek, V. Zima, L. Benes, S.O. Kasap, M. Frumar, J. Non-Cryst, Solids 353, 1232 (2007)

    CAS  Google Scholar 

  36. V. Mastelaro, S. Benazeth, H. Dexpert, A. Ibanez, R. Ollitrault-Fichet, J. Non-Cryst. Solids 151, 1 (1992)

    Article  CAS  Google Scholar 

  37. K.O. Čajko, S.R. Lukić-Petrović, D.D. Štrbac, Acta Phys. Pol. A 127, 1286 (2015)

    Article  CAS  Google Scholar 

  38. K.O. Čajko, D.L. Sekulić, S. Lukić-Petrović, M.V. Šiljegović, D.M. Petrović, J. Mater. Sci. Mater. Electron. 28, 120 (2017)

    Article  CAS  Google Scholar 

  39. M. Dimitrievska, A. Fairbrother, X. Fontané, T. Jawhari, V. Izquierdo-Roca, E. Saucedo, A. Pérez-Rodríguez, Appl. Phys. Lett. 104, 021901 (2014)

    Article  CAS  Google Scholar 

  40. K. Čajko, S. Lukić-Petrović, G. Štrbac, T. Ivetić, Acta Phys. Pol. A 129, 509 (2016)

    Article  CAS  Google Scholar 

  41. N. Shukla, D.K. Dwivedi, J. Asian Ceram. Soc. 4, 178 (2016)

    Article  Google Scholar 

  42. N. Shukla, N. Mehta, D.K. Dwivedi, J. Mater. Sci. Mater. Electron. 27, 12036 (2016)

    Article  CAS  Google Scholar 

  43. J.A. Freitas, U. Strom, D.J. Treacy, J. Non-Cryst. Solids 59–60, 875 (1983)

    Article  Google Scholar 

  44. R.J. Kobliska, S.A. Solin, Phys. Rev. B 8, 756 (1973)

    Article  CAS  Google Scholar 

  45. G. Lucovsky, Phys. Rev. B 6, 1480 (1972)

    Article  CAS  Google Scholar 

  46. A. Kolobov, H. Oyanagi, A. Roy, K. Tanaka, J. Non-Cryst. Solids 227–230, 710 (1998)

    Article  Google Scholar 

  47. T. Cardinal, K.A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J.F. Viens, A. Villeneuve, J. Non-Cryst. Solids 256–257, 353 (1999)

    Article  Google Scholar 

  48. K. Hattori, H. Kawamura, J. Non-Cryst. Solids 59–60, 1063 (1983)

    Article  Google Scholar 

  49. M. Dimitrievska, A. Fairbrother, A. Pérez-Rodríguez, E. Saucedo, V. Izquierdo-Roca, Acta Mater. 70, 272 (2014)

    Article  CAS  Google Scholar 

  50. J. Tasseva, R. Todorov, T. Babeva, K. Petkov, J. Opt. 12, 065601 (2010)

    Article  CAS  Google Scholar 

  51. L. Pauling, The Nature of the Chemical Bond (Cornell University, Ithaca, 1960).

    Google Scholar 

  52. V. Modgil, V.S. Rangra, Phys. B Condens. Matter 445, 14 (2014)

    Article  CAS  Google Scholar 

  53. E.G. El-Metwally, A.M. Shakra, J. Electron. Mater. 47, 4663 (2018)

    Article  CAS  Google Scholar 

  54. A. Sharma, N. Mehta, A. Kumar, J. Mater. Sci. 46, 4509 (2011)

    Article  CAS  Google Scholar 

  55. A.J. Bosman, E.E. Havinga, Phys. Rev. 129, 1593 (1963)

    Article  CAS  Google Scholar 

  56. R. Vaish, K.B.R. Varma, IEEE Trans. Dielectr. Electr. Insul. 18, 155 (2011)

    Article  CAS  Google Scholar 

  57. R. Vaish, K.B.R. Varma, J. Appl. Phys. 106, 114109 (2009)

    Article  CAS  Google Scholar 

  58. J.O. Isard, Proc. IEE Part B Electron. Commun. Eng. 109, 440 (1962)

    Article  Google Scholar 

  59. J.C. Giuntini, J.V. Zanchetta, D. Jullien, R. Eholie, P. Houenou, J. Non-Cryst. Solids 45, 57 (1981)

    Article  CAS  Google Scholar 

  60. I. Jlassi, N. Sdiri, H. Elhouichet, M. Ferid, J. Alloys Compd. 645, 125 (2015)

    Article  CAS  Google Scholar 

  61. M.A.L. Nobre, S. Lanfredi, Catal. Today 78, 529 (2003)

    Article  CAS  Google Scholar 

  62. N. Kanagathara, N.G. Renganathan, M.K. Marchewka, N. Sivakumar, K. Gayathri, P. Krishnan, S. Gunasekaran, G. Anbalagan, Spectrochim. Acta A. Mol. Biomol. Spectrosc. 101, 112 (2013)

    Article  CAS  Google Scholar 

  63. M.A. Alvi, Z.H. Khan, Nanoscale Res. Lett. 8, 148 (2013)

    Article  CAS  Google Scholar 

  64. M. Pollak, G.E. Pike, Phys. Rev. Lett. 28, 1449 (1972)

    Article  CAS  Google Scholar 

  65. C. Crevecoeur, H.J. de Wit, Solid State Commun. 9, 445 (1971)

    Article  Google Scholar 

  66. S.C. Agarwal, S. Guha, K.L. Narasimhan, J. Non-Cryst. Solids 18, 429 (1975)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support of the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. 451-03-68/2020-14/ 200125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina O. Čajko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 1185 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Čajko, K.O., Dimitrievska, M., Sekulić, D.L. et al. Ag-doped As–S–Se chalcogenide glasses: a correlative study of structural and dielectrical properties. J Mater Sci: Mater Electron 32, 6688–6700 (2021). https://doi.org/10.1007/s10854-021-05384-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05384-w

Navigation