Skip to main content
Log in

Influence of phase dominance on structural, magneto-dielectric, magnetic-electric properties of (Ba0.85Ca0.15Zr0.1Ti0.9)O3-CoFe2O3 composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, lead-free (1-x) Ba0.85Ca0.15Zr0.1Ti0.9)O3–xCoFe2O3 (BCZT-CFO, x = 00, 0.2,0.8 and 1) multiferroic composites have been prepared by chemical solution technique and sintered at 1300 °C. The article is focused on a systematic study of phase dominance effect on structure, microstructure, dielectric, magneto-dielectric, magnetic, electric, and magneto-electric properties of the BCZT-CFO composites. The XRD study confirms perovskite phase in BCZT, cubic spinal phase in CFO and mixed structural evolution in composite samples without any traceable secondary phase formation. William-Hall equation has been used to evaluate strain kinetics in pure and composite samples. The scanning electron micrographs show dispersion of smaller BCZT grains in larger CFO grains matrix. The dense microstructure has been observed for composite sample with ferrite phase dominance. The room temperature dielectric study reveals frequency-dependent dielectric dispersion characteristics for composites and pure CFO. The enhanced dielectric properties are observed for composite sample with ferroelectric phase dominance. The room temperature magneto-dielectric behavior has been observed for lead-free multiferroic composites. Under magnetic study, observed typical ferromagnetic M-H hysteresis loop reveals presence of long-range ferromagnetic ordering in pure CFO as well as in composite samples. The highest value of Ms ~ 38.2 emu/g and Mr = 1.2 emu/g has been measured for ferrite phase dominant composite sample. Higher coercive field Hc value has been observed for composite with ferroelectric phase dominance. Leakage current characteristic has been investigated at and above room temperature for prepared samples. The composite with ferrite phase dominance has shown higher leakage current characteristics. The enhanced magento-electric coupling coefficient has been measured for composite with higher ferrite phase concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Fiebig, T. Lottermoser, D. Meier, M. Trassin, Nat. Rev. Mater. 1, 16046 (2016)

    Article  CAS  Google Scholar 

  2. M. Bibes, A. Barthélémy, Towards a magnetoelectric memory. Nat. Mater. 7, 425–426 (2008)

    Article  CAS  Google Scholar 

  3. W. Saenrang, B.A. Davidson, F. Maccherozzi et al., Deterministic and robust room-temperature exchange coupling in monodomainmultiferroic BiFeO3heterostructures. Nat. Commun. 8, 1583 (2017)

    Article  CAS  Google Scholar 

  4. Y. Wang, J. Hu, Y. Lin, C.-W. Nan, Multiferroicmagnetoelectric composite nanostructures. NPG Asia Mater. 1583, 61–68 (2010)

    Article  Google Scholar 

  5. L.F. Cotica, S. Betal, C.T. Morrow, S. Priya, R. Guo, A.S. Bhalla, Thermal effects in magnetoelectric properties of NiFe2O4/Pb(Zr0.52Ti0.48)O3/NiFe2O4 tri-layered composite. Integr. Ferroelectr. 174, 203 (2016)

    Article  CAS  Google Scholar 

  6. R. Jahns, H. Greve, E. Woltermann, E. Quandt, Sensitivity enhancementofmagnetoelectric sensors through frequency-conversion. Sens. Actuators A Phys. 183, 16–21 (2012)

    Article  CAS  Google Scholar 

  7. Y. Zhu, J.W. Zu, A magnetoelectric generator for energy harvesting from the vibration of magnetic levitation. IEEE Trans. Magn 48, 3344–3347 (2012)

    Article  CAS  Google Scholar 

  8. N. Kumar, A. Shukla, N. Kumar, R.N.P. Choudhary, Structural, electrical and magnetic properties of eco-friendly complex multiferroicmaterial: Bi(Co035Ti035Fe030)O3. Ceram. Int. 45, 822–831 (2019)

    Article  CAS  Google Scholar 

  9. C. Ederer, N.A. Spaldin, Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B Condens. Matter Mater Phys. 71, 060401 (2005)

    Article  Google Scholar 

  10. A. Roy, R. Gupta, and A. Garg, Review Article Multiferroic Memories Advances in Condensed Matter Physics 926290 (2012).

  11. C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroicmagnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008)

    Article  Google Scholar 

  12. G. Srinivasan, Magnetoelectric composites. Annu. Rev. Mater. Res. 40, 153–178 (2010)

    Article  CAS  Google Scholar 

  13. S.D. Bhame, P.A. Joy, Effect of sintering conditions and microstructure on the magnetostrictive properties of cobalt ferrite. J. Am. Ceram. Soc. 91(6), 1976–1980 (2008)

    Article  CAS  Google Scholar 

  14. R. Adnan Islam, S. Priya, Progress in dual (Piezoelectric-Magnetostrictive) phase magnetoelectric sintered composites. Adv. Condens. Matter Phys. 2012, 320612 (2012)

    Article  Google Scholar 

  15. M.V. Reddy, J. Praveen Paul, N. SharaSowmya, A. Srinivas, Dibakar Das Magneto-electric properties of in-situ prepared xCoFe2O4-(1–x)(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 particulate composites. Ceram. Int. 42, 17827–17833 (2016)

    Article  CAS  Google Scholar 

  16. L.K. Pradhan, R. Pandey, R. Kumar, M. Kar, Lattice strain induced multiferroicity in PZT-CFO articulate composite. J. Appl. Phys. 123, 074101 (2018)

    Article  Google Scholar 

  17. D. Bochenek, P. Niemiec, R. Skulski, A. Chrobak, P. Wawrzala, Ferroelectric and magnetic properties of the PMN-PT-nickel zinc ferrite multiferroic ceramic composite materials Mater. Chem. Phys. 157, 116 (2015)

    CAS  Google Scholar 

  18. D.K. Pradhan, V.S. Puli, S.N. Tripathy, D.K. Pradhan, J.F. Scott, R.S. Katiyar, Room temperature multiferroic properties of Pb(Fe0.5Nb0.5)O3–Co0.65Zn0.35Fe2O4 composites. J. Appl. Phys. 114, 234106 (2013)

    Article  Google Scholar 

  19. H. Yang, G. Zhang, Y. Lin, Enhanced magnetoelectric properties of the laminated BaTiO0/CoFe2O4 composites. J. Alloys Compd. 644, 390–397 (2015)

    Article  CAS  Google Scholar 

  20. A.S. Gaikwad, S.E. Shirsath, S.R. Wadgane et al., Magnetoelectric coupling and improved dielectric constant of BaTiO3 and Fe-rich (Co07Fe23O4) ferrite nano-composites. J. Magn. Magn. Mater. 465, 508–514 (2018)

    Article  CAS  Google Scholar 

  21. W. Liu, G. Tan, H. Ren, A. Xia, Multiferroic BiFe1−xTMxO3/NiFe2O4 (TM = Mn, Cr) thin films: Structural, electrical and magnetic properties. J. Alloys Compd. 647, 351–356 (2015)

    Article  CAS  Google Scholar 

  22. W. Liu, X. Ren, Phys. Large Piezoelectric Effect in Pb-Free Ceramics Rev. Lett. 103 (2009)

  23. M.M. Selvi, P. Manimuthu, K.S. Kumar, C. Venkateswaran, Magnetodielectric properties of CoFe2O4– BaTiO3 core–shell nanocomposite. J. Magn. Magn. Mater. 369, 155–161 (2014)

    Article  CAS  Google Scholar 

  24. N.V. Long, Y. Yang, T. Teranishi, C.M. Thi, Y. Cao, M. Nogami, Related magnetic properties of CoFe2O4 cobalt ferrite particles synthesised by the polyol method with NaBH4 and heat treatment: new micro and nanoscale structures. RSC Adv. 5, 56560–56569 (2015)

    Article  CAS  Google Scholar 

  25. L.H. Pang, W.J. Ji, Y. Zhang, S.T.Z. LeiWang, Z.L. Luo, Y.F. Chen, Multiferroic properties of (1_x)[0.94Bi0.5Na0.5TiO3–0.06BaTiO3]–xCoFe2O4 ceramics. J. Phys. D: Appl. Phys. 42, 045304 (2009)

    Article  Google Scholar 

  26. N.S. Negi, R. Kumar, J. Hakikat Sharma, R.K.K. Shah, Structural, multiferroic, dielectric and magnetoelectric properties of (1–x)Ba0.85Ca0.15Ti0.90Zr0.10O3 -(x)CoFe2O4 lead-free composites. J. Magnet. Magn. Mater. 456, 292–299 (2018)

    Article  CAS  Google Scholar 

  27. V.D. Mote, Y. Purushotham, B.N. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer- size ZnO particles. Jon. Theor. Appl. Phys. 6, 6 (2012)

    Article  Google Scholar 

  28. W. Qin, T. Nagase, Y. Umakoshi, J.A. Szpunar, Relationship between microstrain and lattice parameter change in nanocrystalline materials. Philo. Mag. Latt. 88(3), 169–179 (2008)

    Article  CAS  Google Scholar 

  29. T. Ramesh, V. Rajendar, S.R. Murthy, CoFe2O4–BaTiO3multiferroic composites: role of ferrite and ferroelectric phases on the structural, magneto dielectric properties. J Mater Sci Mater Electron 28, 11779–11788 (2017)

    Article  CAS  Google Scholar 

  30. J. Paul, P. Monaji, V. Reddy, J. K. Sakthivel. D. Kumar, V. Subramanian, D. Das, Synthesis, characterization, and magneto-electric properties of (1-x)BCZT-xCFO ceramic particulate composites. Int. J. Appl. Ceram. Technol. 12640 (2016).

  31. W. Chen, Z.H. Wang, W. Zhu, O.K. Tan, Ferromagnetic, ferroelectric and dielectric properties of Pb(Zr0.53Ti0.47)O3/CoFe2O4multiferroic composite thick films. J. Phys. D Appl. Phys. 42(7), 075421 (2009)

    Article  Google Scholar 

  32. A. Khamkongkaeo, P. Jantaratana, C. Sirisathitkul, T. Yamwong, S. Maensiri, Frequency-dependent magnetoelectricity of CoFe2O4-BaTiO3 particulate composites. Trans Nonferrous Met Soc China. 21, 2438–2442 (2011)

    Article  CAS  Google Scholar 

  33. F. Saffari, P. Kameli, M. Rahimi, H. Ahmadvand, H. Salamati, Effects of Co-substitution on the structural and magnetic properties of NiCox Fe2-xO4 ferrite nanoparticles. Ceram. Int. 41(6), 7352–7358 (2015)

    Article  CAS  Google Scholar 

  34. S. Ajith Kumar, C.S. ChitraLekha, S. Vivek, K. Nandakumar, M.R. AnantharamanSwapna, S. Nair, Effect of CoFe2O4 weight fraction on multiferroic and magnetoelectric properties of (1–x)Ba0.85Ca0.15Zr0.1Ti0.9O3 − xCoFe2O4 particulate composites. J. Mater. Sci.: Mater. Electron. 30, 8239–8248 (2019)

    Google Scholar 

  35. A. Aziz, E. Ahmed, M.N. Ashiq, M.A. Khan, N. Karamat, I. Ali, Structural, electrical, dielectric and magnetic properties of Mn-Nd substituted CoFeO3nano sized multiferroics. Pro. Nat. Sci-Mater. 26, 325–333 (2016)

    Article  CAS  Google Scholar 

  36. S.M. Mane, S.A. Pawar, D.S. Patil, S.B. Kulkarnib, N.T. Tayadec, J.C. Shin, Magnetoelectric, magnetodielectric effect and dielectric, magnet properties of microwave-sintered lead-free x(Co09Ni01Fe2O4)-(1–x) 05(Ba07Ca03TiO3)-05(BaZr02Ti08O3)] particulate multiferroic composite. Ceram. Int. 46(3), 3311–3323 (2020)

    Article  CAS  Google Scholar 

  37. G. Catalan, Magnetocapacitance without magnetoelectric coupling. Appl. Phys. Lett. 88, 102902 (2006)

    Article  Google Scholar 

  38. Y. Bai, J. Zhou, Z. Gui, L. Li, L. Qiao, A ferromagnetic ferroelectric cofired ceramic for hyperfrequency. J Appl Phys. 101(8), 083907 (2007)

    Article  Google Scholar 

  39. Y. Kumar, K.L. Yadav, Synthesis and study of structural, dielectric, magnetic and agnetoelectric properties of K0.5Na0.5NbO3 -CoMn0.2Fe1.8O4 composites. J. Mater. Sci. Mater. Electron. 29(11), 8923–8936 (2018)

    Article  CAS  Google Scholar 

  40. M.D. Rather, R. Samad, B. Want, Improved magnetoelectric effect in ytterbium doped BaTiO3-CoFe2O4 particulate multiferroic composites. J. Alloy. Comp. 755, 89–99 (2018)

    Article  Google Scholar 

  41. N. Babu, K. Srinivas, T. Bhimasankarama, Studies on lead-free multiferroicmagnetoelectric composites. J. Magn. Magn. Mater. 321, 3764–3770 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the financial help from the University Grant Commission (UGC), Junior Research Fellowship (JRF) (F.17-40/2008(SA-1)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarita Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Thakur, S., Shah, J. et al. Influence of phase dominance on structural, magneto-dielectric, magnetic-electric properties of (Ba0.85Ca0.15Zr0.1Ti0.9)O3-CoFe2O3 composites. J Mater Sci: Mater Electron 32, 6570–6585 (2021). https://doi.org/10.1007/s10854-021-05373-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05373-z

Navigation