Skip to main content
Log in

Structural, magnetic, dielectric and hyperfine interaction studies of titanium (Ti4+)-substituted nickel ferrite (Ni1+xTixFe2−2xO4) nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Tetravalent titanium (Ti4+)-substituted nickel ferrite nanoparticles with varying composition were prepared by standard sol–gel auto-combustion method. The phase identification and nanocrystalline nature were studied through X-ray diffraction (XRD) technique. The room temperature X-ray diffraction pattern show only those planes which belong to cubic spinel structure. No extra peak other than cubic spinel structure appeared in the XRD pattern suggesting that the prepared nanoparticles possess single-phase cubic spinel structure except x = 0.4, 0.5 and 0.6. The plane (311) observed in the XRD pattern showed maximum intensity and is used to calculate the crystallite size (t). The Debye–Scherrer’s formula was used to calculate the crystallite size which was found to vary between 19 and 23 nm for varying Ti composition x. The lattice constant (a) and other structural parameters were obtained from XRD data. The lattice constant is found to be decreasesing with increase in Ti substitution. The FE-SEM images of typical samples confirmed the spherical shape morphology. The magnetic properties were studied by means of vibrating sample magnetometer and Mossbauer spectroscopy technique. All the samples exhibit a good magnetic property which decreases with Ti substitution. The saturation magnetization goes on decreasing from 43.14 (for x = 0.0) to 12.86 (for x = 0.5) which may be attributed to the decreasing A–B interaction. The Mossbauer spectrum of typical samples show sextet pattern. The Moosabauer parameters like isomer shift, quadrupole splitting, Line width etc. were obtained. The dielectric parameters such as dielectric constant, dielectric loss and dielectric loss tangent etc. were recorded using vector network analyzer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Mohammadi et al., Targeted development of sustainable green catalysts for oxidation of alcohols via tungstate-decorated multifunctional amphiphilic carbon quantum dots. ACS Appl. Mater. Interfaces. 11(36), 33194–33206 (2019)

    Article  CAS  Google Scholar 

  2. A. Ansari et al., Novel Fe3O4/hydroxyapatite/β-cyclodextrin nanocomposite adsorbent: synthesis and application in heavy metal removal from aqueous solution. Appl. Organomet. Chem. 33(1), e4634 (2019)

    Article  Google Scholar 

  3. M. Mohammadi et al., Ionic-liquid-modified carbon quantum dots as a support for the immobilization of tungstate ions (WO42–): heterogeneous nanocatalysts for the oxidation of alcohols in water. ACS Sustain. Chem. Eng. 7(5), 5283–5291 (2019)

    Article  CAS  Google Scholar 

  4. H. Kamani et al., Sonocatalytic oxidation of reactive blue 29 by N-doped TiO2 from aqueous solution. J. Mazandaran Univ. Med. Sci. 28(166), 157–169 (2018)

    Google Scholar 

  5. F. Moradnia et al., A novel green synthesis and characterization of tetragonal-spinel MgMn2O4 nanoparticles by tragacanth gel and studies of its photocatalytic activity for degradation of reactive blue 21 dye under visible light. Mater. Res. Express 6(7), 075057 (2019)

    Article  CAS  Google Scholar 

  6. S.T. Fardood et al., Green synthesis, characterization, and photocatalytic activity of cobalt chromite spinel nanoparticles. Mater. Res. Express 7(1), 015086 (2020)

    Article  CAS  Google Scholar 

  7. X.-W. Yan et al., Metal–organic framework derived porous 2D semiconductor C/ZnO nanocomposite with the high electrical conductivity. Mater. Lett. 252, 325–328 (2019)

    Article  CAS  Google Scholar 

  8. V. Safarifard, A. Morsali, Facile preparation of nanocubes zinc-based metal-organic framework by an ultrasound-assisted synthesis method; precursor for the fabrication of zinc oxide octahedral nanostructures. Ultrason. Sonochem. 40, 921–928 (2018)

    Article  CAS  Google Scholar 

  9. N.-N. Zhang et al., Ultrasonic-assisted synthesis, characterization and DNA binding studies of Ru(II) complexes with the chelating N-donor ligand and preparing of RuO2 nanoparticles by the easy method of calcination. J. Organomet. Chem. 878, 11–18 (2018)

    Article  CAS  Google Scholar 

  10. J.-J. Xue et al., Ultrasonic-assisted synthesis and DNA interaction studies of two new Ru complexes; RuO2 nanoparticles preparation. Nanomedicine 13(21), 2691–2708 (2018)

    Article  CAS  Google Scholar 

  11. P. Hayati et al., Sonochemical synthesis of two novel Pb(II) 2D metal coordination polymer complexes: new precursor for facile fabrication of lead(II) oxide/bromide micro-nanostructures. Ultrason. Sonochem. 42, 310–319 (2018)

    Article  CAS  Google Scholar 

  12. S.M. Pormazar et al., Application of amine-functioned Fe3O4 nanoparticles with HPEI for effective humic acid removal from aqueous solution: modeling and optimization. Korean J. Chem. Eng. 37(1), 93–104 (2020)

    Article  CAS  Google Scholar 

  13. T. Mortezazadeh et al., Glucosamine conjugated gadolinium (III) oxide nanoparticles as a novel targeted contrast agent for cancer diagnosis in MRI. J. Biomed. Phys. Eng. 10(1), 25 (2020)

    Article  Google Scholar 

  14. P. Raizada et al., Silver-mediated Bi2O3 and graphitic carbon nitride nanocomposite as all solid state Z scheme photocatalyst for imidacloprid pesticide abatement from water. Desalin. Water Treat. 171, 344–355 (2019)

    Article  CAS  Google Scholar 

  15. K. Atrak, A. Ramazani, S.T. Fardood, Eco-friendly synthesis of Mg0.5Ni0.5AlxFe2-xO4 magnetic nanoparticles and study of their photocatalytic activity for degradation of direct blue 129 dye. J. Photochem. Photobiol. A 382, 111942 (2019)

    Article  CAS  Google Scholar 

  16. F. Moradnia et al., Green synthesis of recyclable MgFeCrO4 spinel nanoparticles for rapid photodegradation of direct black 122 dye. J. Photochem. Photobiol. A 392, 112433 (2020)

    Article  CAS  Google Scholar 

  17. B.E. Azar et al., Green synthesis and characterization of ZnAl2O4@ ZnO nanocomposite and its environmental applications in rapid dye degradation. Optik 208, 164129 (2020)

    Article  Google Scholar 

  18. K.K. Kefeni, T.A. Msagati, B.B. Mamba, Ferrite nanoparticles: synthesis, characterisation and applications in electronic device. Mater. Sci. Eng. B 215, 37–55 (2017)

    Article  CAS  Google Scholar 

  19. D.S. Mathew, R.-S. Juang, An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem. Eng. J. 129(1–3), 51–65 (2007)

    Article  CAS  Google Scholar 

  20. Somvanshi, S.B., et al., Structural, thermal, spectral, optical and surface analysis of rare earth metal ion (Gd3+) doped mixed Zn–Mg nano-spinel ferrites. Ceramics International, 2020.

  21. A. Goldman, Modern Ferrite Technology (Springer, Berlin, 2006).

    Google Scholar 

  22. A. Verma et al., Development of a new soft ferrite core for power applications. J. Magn. Magn. Mater. 300(2), 500–505 (2006)

    Article  CAS  Google Scholar 

  23. S.R. Patade, et al., Effect of zinc doping on water-based manganese ferrite nanofluids for magnetic hyperthermia application. in AIP Conference Proceedings, AIP Publishing LLC, 2020

  24. C.R. Vestal, Z.J. Zhang, Magnetic spinel ferrite nanoparticles from microemulsions. Int. J. Nanotechnol. 1(1–2), 240–263 (2004)

    Article  CAS  Google Scholar 

  25. T. Tatarchuk, et al., Spinel ferrite nanoparticles: synthesis, crystal structure, properties, and perspective applications, in International Conference on Nanotechnology and Nanomaterials, Springer, 2016

  26. S.B. Somvanshi et al., Hydrophobic to hydrophilic surface transformation of nano-scale zinc ferrite via oleic acid coating: magnetic hyperthermia study towards biomedical applications. Ceram. Int. 46(6), 7642–7653 (2020)

    Article  CAS  Google Scholar 

  27. H.L. Andersen et al., Crystalline and magnetic structure–property relationship in spinel ferrite nanoparticles. Nanoscale 10(31), 14902–14914 (2018)

    Article  CAS  Google Scholar 

  28. K.K. Kefeni et al., Spinel ferrite nanoparticles and nanocomposites for biomedical applications and their toxicity. Mater. Sci. Eng. C 107, 110314 (2020)

    Article  CAS  Google Scholar 

  29. D. Makovec et al., The synthesis of spinel–ferrite nanoparticles using precipitation in microemulsions for ferrofluid applications. J. Magn. Magn. Mater. 289, 32–35 (2005)

    Article  CAS  Google Scholar 

  30. S.B. Somvanshi et al., Influential diamagnetic magnesium (Mg2+) ion substitution in nano-spinel zinc ferrite (ZnFe2O4): thermal, structural, spectral, optical and physisorption analysis. Ceram. Int. 46(7), 8640–8650 (2020)

    Article  CAS  Google Scholar 

  31. D. Andhare et al., Structural and chemical properties of ZnFe2O4 nanoparticles synthesised by chemical co-precipitation technique. J. Phys. 1644, 012014 (2020)

    CAS  Google Scholar 

  32. P.B. Kharat, S.B. Somvanshi, K. Jadhav, Multifunctional magnetic nano-platforms for advanced biomedical applications: a brief review. J. Phys. 1644, 012036 (2020)

    CAS  Google Scholar 

  33. M. Abdellatif, G. El-Komy, A. Azab, Magnetic characterization of rare earth doped spinel ferrite. J. Magn. Magn. Mater. 442, 445–452 (2017)

    Article  CAS  Google Scholar 

  34. E.R. Kumar et al., Structural, dielectric and gas sensing behavior of Mn substituted spinel MFe2O4 (M = Zn, Cu, Ni, and Co) ferrite nanoparticles. J. Magn. Magn. Mater. 398, 281–288 (2016)

    Article  Google Scholar 

  35. V.J. Angadi et al., Structural, electrical and magnetic properties of Sc3+ doped Mn-Zn ferrite nanoparticles. J. Magn. Magn. Mater. 424, 1–11 (2017)

    Article  CAS  Google Scholar 

  36. B. Patil, R. Kokate, Synthesis and design of magnetic parameters by Ti doping in cobalt ferrite nanoparticles for nanoelectronics applications. Proc. Manuf. 20, 147–153 (2018)

    Google Scholar 

  37. W.W. Lukens et al., Incorporation of technetium into spinel ferrites. Environ. Sci. Technol. 50(23), 13160–13168 (2016)

    Article  CAS  Google Scholar 

  38. Y. Gao et al., Electromagnetic and microwave absorption properties of Ti doped Li–Zn ferrites. J. Alloy Compd. 805, 934–941 (2019)

    Article  CAS  Google Scholar 

  39. C.R. Vestal, Z.J. Zhang, Effects of surface coordination chemistry on the magnetic properties of MnFe2O4 spinel ferrite nanoparticles. J. Am. Chem. Soc. 125(32), 9828–9833 (2003)

    Article  CAS  Google Scholar 

  40. K.K. Kefeni, B.B. Mamba, T.A. Msagati, Application of spinel ferrite nanoparticles in water and wastewater treatment: a review. Sep. Purif. Technol. 188, 399–422 (2017)

    Article  CAS  Google Scholar 

  41. W. Hu et al., Opportunity of spinel ferrite materials in nonvolatile memory device applications based on their resistive switching performances. J. Am. Chem. Soc. 134(36), 14658–14661 (2012)

    Article  CAS  Google Scholar 

  42. S.R. Patade et al., Self-heating evaluation of superparamagnetic MnFe2O4 nanoparticles for magnetic fluid hyperthermia application towards cancer treatment. Ceram. Int. 46(16), 25576–25583 (2020)

    Article  CAS  Google Scholar 

  43. S.B. Kale, et al. Enhancement in surface area and magnetization of CoFe2O4 nanoparticles for targeted drug delivery application, in AIP Conference Proceedings, AIP Publishing LLC, 2018

  44. R.M. Borade et al., Spinel zinc ferrite nanoparticles: an active nanocatalyst for microwave irradiated solvent free synthesis of chalcones. Mater. Res. Express 7(1), 016116 (2020)

    Article  CAS  Google Scholar 

  45. S.R. Patade et al., Preparation and characterisations of magnetic nanofluid of zinc ferrite for hyperthermia. Nanomater. Energy 9, 8–13 (2020)

    Article  Google Scholar 

  46. P.B. Kharat et al., Induction heating analysis of surface-functionalized nanoscale CoFe2O4 for magnetic fluid hyperthermia toward noninvasive cancer treatment. ACS Omega 5(36), 23378–23384 (2020)

    Article  CAS  Google Scholar 

  47. S.B. Somvanshi et al., Hyperthermic evaluation of oleic acid coated nano-spinel magnesium ferrite: enhancement via hydrophobic-to-hydrophilic surface transformation. J. Alloys Compd. 835, 155422 (2020)

    Article  CAS  Google Scholar 

  48. H. Kardile et al., Effect of Cd2+ doping on structural, morphological, optical, magnetic and wettability properties of nickel ferrite thin films. Optik 207, 164462 (2020)

    Article  CAS  Google Scholar 

  49. S.B. Somvanshi et al., Investigations of structural, magnetic and induction heating properties of surface functionalized zinc ferrite nanoparticles for hyperthermia applications, in AIP Conference Proceedings, AIP Publishing LLC, 2019

  50. V. Sudheesh et al., Synthesis of nanocrystalline spinel ferrite (MFe2O4, M = Zn and Mg) by solution combustion method: influence of fuel to oxidizer ratio. J. Alloy Compd. 742, 577–586 (2018)

    Article  CAS  Google Scholar 

  51. A. Salunkhe et al., Combustion synthesis of cobalt ferrite nanoparticles—influence of fuel to oxidizer ratio. J. Alloy Compd. 514, 91–96 (2012)

    Article  CAS  Google Scholar 

  52. H. Waqas, A. Qureshi, Influence of pH on nanosized Mn–Zn ferrite synthesized by sol–gel auto combustion process. J. Therm. Anal. Calorim. 98(2), 355–360 (2009)

    Article  CAS  Google Scholar 

  53. A. Goktas, I. Mutlu, A. Kawashi, Growth and characterization of La1−xAxMnO3 (A = Ag and K, x= 0.33) epitaxial and polycrystalline manganite thin films derived by sol–gel dip-coating technique. Thin Solid Films 520(19), 6138–6144 (2012)

    Article  CAS  Google Scholar 

  54. S.A. Jadhav et al., Magneto-structural and photocatalytic behavior of mixed Ni–Zn nano-spinel ferrites: visible light-enabled active photodegradation of rhodamine B. J. Mater. Sci.: Mater. Electron. 31, 11352–11365 (2020)

    CAS  Google Scholar 

  55. V. Bharati et al., Influence of trivalent Al–Cr co-substitution on the structural, morphological and Mössbauer properties of nickel ferrite nanoparticles. J. Alloy Compd. 821, 153501 (2020)

    Article  CAS  Google Scholar 

  56. A.V. Humbe et al., Cation distribution, magnetic and hyperfine interaction studies of Ni–Zn spinel ferrites: role of Jahn Teller ion (Cu2+) substitution. Mater. Adv. 1(4), 880–890 (2020)

    Article  CAS  Google Scholar 

  57. A. Rahman et al., Fabrication of Ce3+ substituted nickel ferrite-reduced graphene oxide heterojunction with high photocatalytic activity under visible light irradiation. J. Hazard. Mater. 394, 122593 (2020)

    Article  CAS  Google Scholar 

  58. V. Manikandan et al., Fabrication of tin substituted nickel ferrite (Sn-NiFe2O4) thin film and its application as opto-electronic humidity sensor. Sens. Actuators A 272, 267–273 (2018)

    Article  CAS  Google Scholar 

  59. F.A. Wahaab, L.L. Adebayo, Electromagnetic properties of Cr-substituted nickel ferrite nanoparticles and their microwave absorption performance. Ceram. Int. 46(18), 28506–28513 (2020)

    Article  CAS  Google Scholar 

  60. V. Manikandan et al., Structural, dielectric and enhanced soft magnetic properties of lithium (Li) substituted nickel ferrite (NiFe2O4) nanoparticles. J. Magn. Magn. Mater. 465, 634–639 (2018)

    Article  CAS  Google Scholar 

  61. M. Ahmed, K. Rady, M. Shams, Enhancement of electric and magnetic properties of Mn–Zn ferrite by Ni–Ti ions substitution. J. Alloy Compd. 622, 269–275 (2015)

    Article  CAS  Google Scholar 

  62. A. Goktas et al., Enhancing crystalline/optical quality, and photoluminescence properties of the Na and Sn substituted ZnS thin films for optoelectronic and solar cell applications; a comparative study. Opt. Mater. 107, 110073 (2020)

    Article  CAS  Google Scholar 

  63. B. Ünal et al., Microwave, dielectric and magnetic properties of Mg–Ti substituted Ni–Zn ferrite nanoparticles. Ceram. Int. 42(15), 17317–17331 (2016)

    Article  Google Scholar 

  64. S.C. Mazumdar et al., Effect of Ti4+ doping on structural, electrical and magnetic properties of Ni0.4Cu0.2Zn0.4Fe2–xTixO4 ferrites. Mater. Sci. Appl. 10(12), 733 (2019)

    CAS  Google Scholar 

  65. R. Rathi, R. Neogi, Structural, electric and magnetic properties of titanium doped Ni-Cu-Zn ferrite. Mater. Today 3(6), 2437–2442 (2016)

    Google Scholar 

  66. Y. Guo et al., A facile spray pyrolysis method to prepare Ti-doped ZnFe2O4 for boosting photoelectrochemical water splitting. J. Mater. Chem. A 5(16), 7571–7577 (2017)

    Article  CAS  Google Scholar 

  67. K.P. Chae et al., Magnetic properties of Ti-doped ultrafine CoFe2O4 powder grown by the sol gel method. Hyperfine Interact. 136(1–2), 65–72 (2001)

    Article  CAS  Google Scholar 

  68. P. Chand, R.C. Srivastava, A. Upadhyay, Magnetic study of Ti-substituted NiFe2O4 ferrite. J. Alloy Compd. 460(1–2), 108–114 (2008)

    Article  CAS  Google Scholar 

  69. Y. Du et al., Valence of Ti cations and its effect on magnetic properties of spinel ferrites TixM1–xFe2O4 (M = Co, Mn). RSC Adv. 8(1), 302–310 (2018)

    Article  CAS  Google Scholar 

  70. P. Hankare et al., Synthesis and characterization of nanocrystalline Ti-substituted Zn ferrite. J. Alloy Compd. 509(5), 2160–2163 (2011)

    Article  CAS  Google Scholar 

  71. B. Ramesh et al., Influence of Zr/Ti on dielectric behaviour of Mn-Zn ferrites. J. Magn. Soc. Jpn. 22, S1_29 (1998)

    Article  Google Scholar 

  72. L.-Z. Li et al., Effects of Ce substitution on the structural and electromagnetic properties of NiZn ferrite. J. Magn. Magn. Mater. 475, 1–4 (2019)

    Article  CAS  Google Scholar 

  73. L.-Z. Li et al., Structural and magnetic properties of Mg-substituted NiZnCo ferrite nanopowders. Ceram. Int. 40(9), 13917–13921 (2014)

    Article  CAS  Google Scholar 

  74. F. Önal et al., Structure and magnetization of polycrystalline La0.66Ca0.33MnO3 and La0.66Ba0.33MnO3 films prepared using sol-gel technique. J. Supercond. Novel Magn. 31, 12 (2018)

    Google Scholar 

  75. Y. Köseoğlu et al., Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles. Ceram. Int. 38(5), 3625–3634 (2012)

    Article  Google Scholar 

  76. N. Somaiah et al., Magnetic and magnetoelastic properties of Zn-doped cobalt-ferrites—CoFe2−xZnxO4 (x = 0, 0.1, 0.2, and 0.3). J. Magn. Magn. Mater. 324(14), 2286–2291 (2012)

    Article  CAS  Google Scholar 

  77. T. Poudel et al., The effect of gadolinium substitution in inverse spinel nickel ferrite: structural, Magnetic, and Mössbauer study. J. Alloy Compd. 802, 609–619 (2019)

    Article  CAS  Google Scholar 

  78. I. Sharifi, H. Shokrollahi, Structural, magnetic and Mössbauer evaluation of Mn substituted Co–Zn ferrite nanoparticles synthesized by co-precipitation. J. Magn. Magn. Mater. 334, 36–40 (2013)

    Article  CAS  Google Scholar 

  79. S.B. Khan, S. Irfan, S.-L. Lee, Influence of Zn+2 doping on Ni-based nanoferrites; (Ni1−xZnxFe2O4). Nanomaterials 9(7), 1024 (2019)

    Article  CAS  Google Scholar 

  80. A. Goktas et al., Physical properties of solution processable n-type Fe and Al co-doped ZnO nanostructured thin films: role of Al doping levels and annealing. Mater. Sci. Semicond. Process. 75, 221–233 (2018)

    Article  CAS  Google Scholar 

  81. A. Goktas, F. Aslan, I.H. Mutlu, Annealing effect on the characteristics of La0.67Sr0.33MnO3 polycrystalline thin films produced by the sol–gel dip-coating process. J. Mater. Sci. 23(2), 605–611 (2012)

    CAS  Google Scholar 

  82. A.R. Chavan et al., Influence of trivalent Cr ion substitution on the physicochemical, optical, electrical, and dielectric properties of sprayed NiFe2O4 spinel-magnetic thin films. RSC Adv. 10(42), 25143–25154 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors Mr. B. A. Patil is thankful to Dr. Mahaveer Singh, Department of Physics, Himachal Pradesh University, Himachal and Dr. R. S. Shinde, Raja Ramanna Centre for Advanced Technology (RRCAT), Indore for providing Mossbauer Spectroscopy facility and Dielectric measurement facility, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Patil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, B.A., Kounsalye, J.S., Humbe, A.V. et al. Structural, magnetic, dielectric and hyperfine interaction studies of titanium (Ti4+)-substituted nickel ferrite (Ni1+xTixFe2−2xO4) nanoparticles. J Mater Sci: Mater Electron 32, 4556–4567 (2021). https://doi.org/10.1007/s10854-020-05197-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05197-3

Navigation