Skip to main content

Advertisement

Log in

High-performance piezoelectric nanogenerator based on electrospun ZnO nanorods/P(VDF-TrFE) composite membranes for energy harvesting application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A novel flexible zinc oxide nanorods (NRs)/poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) nanocomposite was prepared by electrospinning for fabricating piezoelectric nanogenerator (PNG). The NRs were used as nanofillers of piezoelectric P(VDF-TrFE), which can enhance the electroactive β-crystal ratio as well as the crystallinity of P(VDF-TrFE). It has been found that the addition of different levels of piezoelectric ZnO NRs can improve the overall performance of PNG made with electrospun membranes. The PNG comprised by 10 wt% ZnO NRs/P(VDF-TrFE) nanocomposite demonstrates an outstanding output open-circuit voltage (61 V) and short-circuit current (2.2 μA). It has been concluded that the ion–dipole interaction between NRs and electroactive β-crystals of P(VDF-TrFE) are useful for the construction of the high-performance flexible PNG. Besides, the output power generated from the PNG can directly light 25 commercial light-emitting diodes, and also capable to charge up a capacitor (4.7 μF) and reached 2.1 V in 2 min, which indicates the potential of the PNG for flexible wearable electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X. Chen, Y. Song, Z. Su, H. Chen, X. Cheng, J. Zhang, M. Han, H. Zhang, Flexible fiber-based hybrid nanogenerator for biomechanical energy harvesting and physiological monitoring. Nano Energy 38, 43–50 (2017)

    CAS  Google Scholar 

  2. A.Y. El-Moghazy, C. Zhao, G. Istamboulie, N. Amaly, Y. Si, T. Noguer, G. Sun, Ultrasensitive label-free electrochemical immunosensor based on PVA-co-PE nanofibrous membrane for the detection of chloramphenicol residues in milk. Biosens. Bioelectron. 117, 838–844 (2018)

    CAS  Google Scholar 

  3. Y. Zhu, Y. Wu, G. Wang, Z. Wang, Q. Tan, L. Zhao, D. Wu, A flexible capacitive pressure sensor based on an electrospun polyimide nanofiber membrane. Org. Electron. 84, 105759 (2020)

    CAS  Google Scholar 

  4. S. Mishra, P. Yogi, P.R. Sagdeo, R. Kumar, TiO2−Co3O4 core−shell nanorods: bifunctional role in better energy storage and electrochromism. ACS Appl. Energy Mater. 1, 790–798 (2018)

    Google Scholar 

  5. Y. Zhao, Q. Liao, G. Zhang, Z. Zhang, Q. Liang, X. Liao, Y. Zhang, High output piezoelectric nanocomposite generators composed of oriented BaTiO3 NPs@PVDF. Nano Energy 11, 719–727 (2015)

    CAS  Google Scholar 

  6. K.-Y. Shin, J.S. Lee, J. Jang, Highly sensitive, wearable and wireless pressure sensor using free-standing ZnO nanoneedle/PVDF hybrid thin film for heart rate monitoring. Nano Energy 22, 95–104 (2016)

    CAS  Google Scholar 

  7. C. Lang, J. Fang, H. Shao, H. Wang, G. Yan, X. Ding, T. Lin, High-output acoustoelectric power generators from poly(vinylidenefluoride-co-trifluoroethylene) electrospun nano-nonwovens. Nano Energy 35, 146–153 (2017)

    CAS  Google Scholar 

  8. M. Khalifa, S. Anandhan, PVDF nanofibers with embedded polyaniline-graphitic carbon nitride nanosheet composites for piezoelectric energy conversion. ACS Appl. Nano Mater. 2, 7328–7339 (2019)

    CAS  Google Scholar 

  9. K. Roy, S.K. Ghosh, A. Sultana, S. Garain, M. Xie, C.R. Bowen, K. Henkel, D. Schmeiβer, D. Mandal, A self-powered wearable pressure sensor and pyroelectric breathing sensor based on GO interfaced PVDF nanofibers. ACS Appl. Nano Mater. 2, 2013–2025 (2019)

    CAS  Google Scholar 

  10. D. Son, Z. Bao, Nanomaterials in skin-inspired electronics: toward soft and robust skin-like electronic nanosystems. ACS Nano 12, 11731–11739 (2018)

    CAS  Google Scholar 

  11. J. Xue, T. Wu, Y. Dai, Y. Xia, Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem. Rev. 119, 5298–5415 (2019)

    CAS  Google Scholar 

  12. A. Augustine, R. Augustine, A. Hasan, V. Raghuveeran, D. Rouxel, N. Kalarikkal, S. Thomas, Development of titanium dioxide nanowire incorporated poly(vinylidene fluoride-trifluoroethylene) scaffolds for bone tissue engineering applications. J. Mater. Sci. Mater. Med. 30, 96 (2019)

    Google Scholar 

  13. C. Peter, H. Kliem, Ferroelectric imprint and polarization in the amorphous phase in P(VDF-TrFE). J. Appl. Phys. 125, 17 (2019)

    Google Scholar 

  14. F.J. Baltá Calleja, A.G. Arche, T.A. Ezquerra, C. Santa Cruz, F. Batallán, B. Frick, E.L. Cabarcos, Structure and properties of ferroelectric copolymers of poly(vinylidene fluoride). Adv. Polym. Sci. 108, 1–48 (1993)

    Google Scholar 

  15. M.C. Garcia-Gutierrez, A. Linares, I. Martin-Fabiani, J.J. Hernandez, M. Soccio, D.R. Rueda, T.A. Ezquerra, M. Reynolds, Understanding crystallization features of P(VDF-TrFE) copolymers under confinement to optimize ferroelectricity in nanostructures. Nanoscale 5, 6006–6012 (2013)

    CAS  Google Scholar 

  16. N. Jia, Q. He, J. Sun, G. Xia, R. Song, Crystallization behavior and electroactive properties of PVDF, P(VDF-TrFE) and their blend films. Polym. Test. 57, 302–306 (2017)

    CAS  Google Scholar 

  17. Y. Yachi, T. Yoshimura, N. Fujimura, Effect of the annealing temperature of P(VDF/TrFE) thin films on their ferroelectric properties. J. Korean Phys. Soc. 62, 1065–1068 (2013)

    CAS  Google Scholar 

  18. Y. Qi, J. Kim, T.D. Nguyen, B. Lisko, P.K. Purohit, M.C. McAlpine, Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett. 11, 1331–1336 (2011)

    CAS  Google Scholar 

  19. D. Hu, M. Yao, Y. Fan, C. Ma, M. Fan, M. Liu, Strategies to achieve high performance piezoelectric nanogenerators. Nano Energy 55, 288–304 (2019)

    CAS  Google Scholar 

  20. H. Lee, H. Kim, D.Y. Kim, Y. Seo, Pure piezoelectricity generation by a flexible nanogenerator based on lead zirconate titanate nanofibers. ACS Omega 4, 2610–2617 (2019)

    CAS  Google Scholar 

  21. S.D.B. Sreeja, S. Gopalan, C.O. Sreekala, Piezoelectric studies of PEDOT:PSS incorporated BaTiO3/PDMS micro-generator. Mater. Today (2020). https://doi.org/10.1016/j.matpr.2020.05.042

    Article  Google Scholar 

  22. R. Fu, S. Chen, Y. Lin, S. Zhang, J. Jiang, Q. Li, Y. Gu, Improved piezoelectric properties of electrospun poly(vinylidene fluoride) fibers blended with cellulose nanocrystals. Mater. Lett. 187, 86–88 (2017)

    CAS  Google Scholar 

  23. J. Jiang, S. Tu, R. Fu, J. Li, F. Hu, B. Yan, Y. Gu, S. Chen, Flexible piezoelectric pressure tactile sensor based on electrospun BaTiO3/poly(vinylidene fluoride) nanocomposite membrane. ACS Appl. Mater. Interfaces 12, 33989–33998 (2020)

    CAS  Google Scholar 

  24. G. Zhao, M. Sun, X. Liu, J. Xuan, W. Kong, R. Zhang, Y. Sun, F. Jia, G. Yin, B. Liu, Fabrication of CdS quantum dots sensitized ZnO nanorods/TiO2 nanosheets hierarchical heterostructure films for enhanced photoelectrochemical performance. Electrochim. Acta 304, 334–341 (2019)

    CAS  Google Scholar 

  25. G. Zhao, J. Xuan, Q. Gong, L. Wang, J. Ren, M. Sun, F. Jia, G. Yin, B. Liu, In situ growing double-layer TiO2 nanorod arrays on new-type FTO electrodes for low-concentration NH3 detection at room temperature. ACS Appl. Mater. Interfaces 12, 8573–8582 (2020)

    CAS  Google Scholar 

  26. H. Pan, V.A. Risley, K.R. Martindale, M.D. Heagy, Photocatalytic reduction of bicarbonate to formic acid using hierarchical ZnO nanostructures. ACS Sustain. Chem. Eng. 7, 1210–1219 (2018)

    Google Scholar 

  27. V.S. Nguyen, D. Rouxel, B. Vincent, L. Badie, F.D.D. Santos, E. Lamouroux, Y. Fort, Influence of cluster size and surface functionalization of ZnO nanoparticles on the morphology, thermomechanical and piezoelectric properties of P(VDF-TrFE) nanocomposite films. Appl. Surf. Sci. 279, 204–211 (2013)

    CAS  Google Scholar 

  28. M.R. Hasan, S.H. Baek, K.S. Seong, J.H. Kim, I.K. Park, Hierarchical ZnO nanorods on Si micropillar arrays for performance enhancement of piezoelectric nanogenerators. ACS Appl. Mater. Interfaces 7, 5768–5774 (2015)

    CAS  Google Scholar 

  29. J. Li, S. Chen, W. Liu, R. Fu, S. Tu, Y. Zhao, L. Dong, B. Yan, Y. Gu, High performance piezoelectric nanogenerators based on electrospun ZnO nanorods/poly(vinylidene fluoride) composite membranes. J. Phys. Chem. C 123, 11378–11387 (2019)

    CAS  Google Scholar 

  30. J.M. Deitzel, J. Kleinmeyer, D. Harris, N.C. Tan, The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42, 261–272 (2001)

    CAS  Google Scholar 

  31. Y.-J. Kim, C.H. Ahn, M.O. Choi, Effect of thermal treatment on the characteristics of electrospun PVDF−silica composite nanofibrous membrane. Eur. Polym. J. 46, 1957–1965 (2010)

    CAS  Google Scholar 

  32. L. Yu, P. Cebe, Crystal polymorphism in electrospun composite nanofibers of poly(vinylidene fluoride) with nanoclay. Polymer 50, 2133–2141 (2009)

    CAS  Google Scholar 

  33. Q. Zhang, W. Xia, Z. Zhu, Z. Zhang, Crystal phase of poly(vinylidene fluoride-co-trifluoroethylene) synthesized via hydrogenation of poly(vinylidene fluoride-co-chlorotrifluoroethylene). J. Appl. Polym. Sci. 127, 3002–3008 (2013)

    CAS  Google Scholar 

  34. S. Gupta, D. Shakthivel, L. Lorenzelli, R. Dahiya, Temperature compensated tactile sensing using MOSFET with P(VDF-TrFE)/BaTiO3 capacitor as extended gate. IEEE Sens. J. 19, 435–442 (2019)

    CAS  Google Scholar 

  35. K. Bicy, S. Suriyakumar, A.S. Anu, N. Kalarikkal, A.M. Stephen, V.G. Geethamma, D. Rouxel, S. Thomas, Highly lithium ion conductive, Al2O3 decorated electrospun P(VDF-TrFE) membranes for lithium ion battery separators. New J. Chem. 42, 19505–19520 (2018)

    Google Scholar 

  36. S.C. Karumuthil, S.P. Rajeev, S. Varghese, Poly(vinylidene fluoride-trifluoroethylene)-ZnO nanoparticle composites on a flexible poly(dimethylsiloxane) substrate for energy harvesting. ACS Appl. Nano Mater. 2, 4350–4357 (2019)

    CAS  Google Scholar 

  37. N.A. Shepelin, V.C. Lussini, P.J. Fox, G.W. Dicinoski, A.M. Glushenkov, J.G. Shapter, A.V. Ellis, 3D printing of poly(vinylidene fluoride-trifluoroethylene): a poling-free technique to manufacture flexible and transparent piezoelectric generators. MRS Commun. 9, 159–164 (2019)

    CAS  Google Scholar 

  38. S.A. Haddadi, A.S.A. Ramazani, S. Talebi, S. Fattahpour, M. Hasany, Investigation of the effect of nanosilica on rheological, thermal, mechanical, structural, and piezoelectric properties of poly(vinylidene fluoride) nanofibers fabricated using an electrospinning technique. Ind. Eng. Chem. Res. 56, 12596–12607 (2017)

    CAS  Google Scholar 

  39. P. Thakur, A. Kool, N.A. Hoque, B. Bagchi, F. Khatun, P. Biswas, D. Brahma, S. Roy, S. Banerjee, S. Das, Superior performances of in situ synthesized ZnO/PVDF thin film based self-poled piezoelectric nanogenerator and self-charged photo-power bank with high durability. Nano Energy 44, 456–467 (2018)

    CAS  Google Scholar 

  40. Y. Wu, S.L. Hsu, C. Honeker, D.J. Bravet, D.S. Williams, The role of surface charge of nucleation agents on the crystallization behavior of poly(vinylidene fluoride). J. Phys. Chem. B 116, 7379–7388 (2012)

    CAS  Google Scholar 

  41. J. Yu, K. Cai, L. Jin, H.L. Ning, P.Y. Deng, J.T. Ma, D. Guo, Self-assembled full nanowire P(VDF-TrFE) films with both anisotropic and high bidirectional piezoelectricity. Nanoscale 11, 14896–14906 (2019)

    CAS  Google Scholar 

  42. W. Rahman, S. Garain, A. Sultana, T. Ranjan Middya, D. Mandal, Self-powered piezoelectric nanogenerator based on Wurtzite ZnO nanoparticles for energy harvesting application. Mater. Today 5, 9826–9830 (2018)

    CAS  Google Scholar 

  43. M. Wang, L. Li, S. Zhou, R. Tang, Z. Yang, X. Zhang, Influence of CNTs on the crystalline microstructure and ferroelectric behavior of P(VDF-TrFE). Langmuir 34, 10702–10710 (2018)

    CAS  Google Scholar 

  44. A. Lonjon, P. Demont, E. Dantras, C. Lacabanne, Mechanical improvement of P(VDF-TrFE)/nickel nanowires conductive nanocomposites: influence of particles aspect ratio. J. Non-Cryst. Solids 358, 236–240 (2012)

    CAS  Google Scholar 

  45. M.D. Kiran, H.K. Govindaraju, T. Jayaraju, N. Kumar, Review-effect of fillers on mechanical properties of polymer matrix composites. Mater. Today 5, 22421–22424 (2018)

    CAS  Google Scholar 

  46. P. Hu, D. Zheng, C. Zhao, Y. Zhang, J. Niu, Linear dependence between content of effective piezo-phase and mechanical-to-electrical conversion in electrospun poly(vinylidene fluoride) fibrous membrane. Mater. Lett. 218, 71–75 (2018)

    CAS  Google Scholar 

  47. X. Guan, B. Xu, J. Gong, Hierarchically architected polydopamine modified BaTiO3@P(VDF-TrFE) nanocomposite fiber mats for flexible piezoelectric nanogenerators and self-powered sensors. Nano Energy 70, 104516 (2020)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Cooperation Project of Sichuan University and Zigong City (2019CDZG-3), the Science and Technology Foundation of Sichuan province (2020YFG0104), and Miaozi Project in Science and Technology Innovation Program of Sichuan Province (No.20-YCG045). We would like to thank the Analytical & Testing Center of Sichuan University for structured illumination microscopy work, and we are grateful to Shuping Zheng for her help with SEM images. We thank Mi Zhou for the experimental assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingchun Gu or Sheng Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 312 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, L., Chen, L., Yu, J. et al. High-performance piezoelectric nanogenerator based on electrospun ZnO nanorods/P(VDF-TrFE) composite membranes for energy harvesting application. J Mater Sci: Mater Electron 32, 3966–3978 (2021). https://doi.org/10.1007/s10854-020-05138-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05138-0

Navigation