Skip to main content
Log in

The effect of bromide precursor on the properties of organolead halide perovskite for solar cell fabricated under ambient condition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Hybrid CH3NH3PbI3 − xBrx have drawn a tremendous interest as light harvesters in mesoscopic and planar heterojunction solar cells due to their high coefficient absorption. Herein, we investigated the difference between the effect of different bromide precursor on the properties of prepared CH3NH3PbI3 − xBrx thin film. In this study, the CH3NH3PbI3 − xBrx perovskite films were made by two processes. The first process consist in adding PbBr2 in the PbI2 with different molar ratios (x = 0, 0.05, 0.1) followed by depositing MAI in isopropanol. The second process resides in depositing CH3N3Br in isopropanol on the top of PbI2 − xBrx followed by dropping a solution of MAI in isopropanol. The study revealed that the prepared thin film using the first process with molar ratio 0.05 exhibited high crystallinity, suitable morphology, high absorption with non-radiative recombination. These attractive properties of the thin film prepared by the first process should heighten interest in its use as a solar absorber layer for increasing of solar cells efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. Hodes, Perovskite-based solar cells. Science 342, 317–318 (2013). https://doi.org/10.1126/science.1245473

    Article  CAS  Google Scholar 

  2. M. Green, A. Ho-Baillie, H. Snaith, The emergence of perovskite solar cells. Nat. Photon. 8, 506–514 (2014). https://doi.org/10.1038/nphoton.2014.134

    Article  CAS  Google Scholar 

  3. J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Electrolytes in dye-sensitized solar cells. Chem. Rev. 115(5), 2136–2173 (2015). https://doi.org/10.1021/cr400675m

    Article  CAS  Google Scholar 

  4. W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, L. Han, Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350(6263), 944–948 (2015). https://doi.org/10.1126/science.aad1015

    Article  CAS  Google Scholar 

  5. Z. Xiao et al., Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci. 7, 2619–2623 (2014). https://doi.org/10.1039/C4EE01138D

    Article  CAS  Google Scholar 

  6. C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26(10), 1584–1589 (2014). https://doi.org/10.1002/adma.201305172

    Article  CAS  Google Scholar 

  7. J.H. Im, C.R. Lee, J.W. Lee, S.W. Park, N.G. Park, 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3(10), 4088–4093 (2011). https://doi.org/10.1039/c1nr10867k

    Article  CAS  Google Scholar 

  8. K. Liang, D.B. Mitzi, M.T. Prikas, Synthesis and characterization of organic−inorganic perovskite thin films prepared using a versatile two-step dipping technique. Chem. Mater. 10(1), 403–411 (1998). https://doi.org/10.1021/cm970568f

    Article  CAS  Google Scholar 

  9. Q. Chen, H. Zhou, Z. Hong, S. Luo, H-S. Duan, H.-H. Wang, Y. Liu, G. Li, Y. Yang, Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136(2), 622–625 (2014). https://doi.org/10.1021/ja411509g

    Article  CAS  Google Scholar 

  10. M. Liu, M. Johnston, H. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013). https://doi.org/10.1038/nature12509

    Article  CAS  Google Scholar 

  11. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.  Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013). https://doi.org/10.1126/science.1243982

  12. G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, T.C. Sum, Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342(6156), 344–347 (2013). https://doi.org/10.1126/science.1243167

  13. V. D’Innocenzo, G. Grancini, M. Alcocer et al., Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5, 3586 (2014). https://doi.org/10.1038/ncomms4586

  14. D. Bi, W. Tress, M.I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J.P. Correa Baena, J.D. Decoppet, S.M. Zakeeruddin, M.K. Nazeeruddin, M. Grätzel M, A. Hagfeldt, Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2(1), e1501170 (2016). https://doi.org/10.1126/sciadv.1501170

  15. Y. Zhou, M. Yang, W. Wu, A. Vasiliev, K. Zhu, N. Padture, Room-temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for high-performance solar cells. J. Mater. Chem. 3, 8178–8184 (2015)

    Article  CAS  Google Scholar 

  16. C. Bi, Y. Yuan, Y. Fang, J. Huang, Low-temperature fabrication of efficient wide-bandgap organolead trihalide perovskite solar cells. Adv. Energy Mater. 5 (2015). https://doi.org/10.1002/aenm.201401616

  17. H. Yu et al., Room-temperature mixed-solvent-vapour annealing for high performance perovskite solar cells. J. Mater. Chem. A 4(1), 321–326 (2016). https://doi.org/10.1039/C5TA08565A

    Article  CAS  Google Scholar 

  18. Q. Chen, H. Zhou, Y. Fang et al., The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells. Nat. Commun. 6, 7269 (2015). https://doi.org/10.1038/ncomms8269

  19. Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J.J. Berry, K. Zhu, Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 28(1), 284–292 (2016). https://doi.org/10.1021/acs.chemmater.5b04107

    Article  CAS  Google Scholar 

  20. Y. Chen, Y. Zhao, Z. Liang, Non-thermal annealing fabrication of efficient planar perovskite solar cells with inclusion of NH4Cl. Chem. Mater. 27(5), 1448–1451 (2015). https://doi.org/10.1021/acs.chemmater.5b00041

    Article  CAS  Google Scholar 

  21. J. Lee, D. Kim, H. Kim, S. Seo, S. Cho, N. Park, Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv. Energy Mater. 5(20) (2015)

  22. M. Saliba, T. Matsui, J.Y. Seo, K. Domanski, J.P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9(6), 1989–1997 (2016). https://doi.org/10.1039/c5ee03874j

  23. N. Jeon, J. Noh, Y. Kim et al., Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014). https://doi.org/10.1038/nmat4014

  24. H. Chen et al., Solvent engineering boosts the efficiency of paintable carbon-based perovskite solar cells to beyond 14%. Adv. Energy Mater. 6(8), 1502087 (2016). https://doi.org/10.1002/aenm.201502087

  25. J. Burschka, N. Pellet, S.J. Moon et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013). https://doi.org/10.1038/nature12340

  26. X. Li, D. Bi, C. Yi, J.D. Décoppet, J. Luo, S.M. Zakeeruddin, A. Hagfeldt, M. Grätzel, A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science 353(6294), 58–62 (2016). https://doi.org/10.1126/science.aaf8060

  27. Y. Tu, J. Wu, Z. Lan et al., Modulated CH3NH3PbI3−xBrx film for efficient perovskite solar cells exceeding 18%. Sci. Rep. 7, 44603 (2017). https://doi.org/10.1038/srep44603

  28. J. He, T. Chen, Additive regulated crystallization and film formation of CH3NH3PbI3−xBrx for highly efficient planar-heterojunction solar cells. J. Mater. Chem. (2015). https://doi.org/10.1039/C5TA05373K

  29. A. Sadhanala, F. Deschler, T.H. Thomas, S.E. Dutton, K.C. Goedel, F.C. Hanusch, M.L. Lai, U. Steiner, T. Bein, P. Docampo, D. Cahen, R.H. Friend, Preparation of single-phase films of CH3NH3Pb(I1-xBrx)3 with sharp optical band edges. J. Phys. Chem. Lett. 5(15), 2501–2505 (2014). https://doi.org/10.1021/jz501332v

  30. M. Zhang, M. Lyu, H. Yu, J.H. Yun, Q. Wang, L. Wang, Stable and low-cost mesoscopic CH3NH3PbI2 Br perovskite solar cells by using a thin poly(3-hexylthiophene) layer as a hole transporter. Chemistry 21(1), 434–439 (2015). https://doi.org/10.1002/chem.201404427

  31. J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13(4), 1764–1769 (2013). https://doi.org/10.1021/nl400349b

  32. W. Zhu, C. Bao, F. Li, T. Yu, H. Gao, Y. Yi, J. Yang, G. Fu, X. Zhou, Z. Zou, A halide exchange engineering for CH3NH3PbI3− xBrx perovskite solar cells with high performance and stability. Nano Energy (2015). https://doi.org/10.1016/j.nanoen.2015.11.024

    Article  Google Scholar 

  33. G. Dong, D. Xia, Y. Yang, L. Sheng, R. Fan, L. Qiu, Regulated film quality with MABr addition in two-step sequential deposition for boosting the performance of perovskite solar cells. Energy Technol. (2017). https://doi.org/10.1002/ente.201700480

    Article  Google Scholar 

  34. https://www.intechopen.com/books/solar-cells-new-approaches-and-reviews/crystal-structures-of-ch3nh3pbi3-and-related-perovskite-compounds-used-for-solar-cells

  35. S. Paek, P. Schouwink, E.N. Athanasopoulou, K.T. Cho, G. Grancini, Y. Lee, Y. Zhang, F. Stellacci, M.K. Nazeeruddin, P. Gao, From nano- to micrometer scale: the role of antisolvent treatment on high performance perovskite solar cells. Chem. Mater. 29(8), 3490–3498 (2017). https://doi.org/10.1021/acs.chemmater.6b05353

  36. G.E. Eperon, S.N. Habisreutinger, T. Leijtens, B.J. Bruijnaers, J.J. van Franeker, D.W. deQuilettes, S. Pathak, R.J. Sutton, G. Grancini, D.S. Ginger, R.A. Janssen, A. Petrozza, H.J. Snaith, The importance of moisture in hybrid lead halide perovskite thin film fabrication. ACS Nano. 9(9), 9380-9393 (2015). https://doi.org/10.1021/acsnano.5b03626

  37. Z. Wang, S. Yuan, D. Li, F. Jin, R. Zhang, Y. Zhan, M. Lu, S. Wang, Y. Zheng, J. Guo, Z. Fan, L. Chen, Influence of hydration water on CH3NH3PbI3 perovskite films prepared through one-step procedure. Opt. Express 24(22), A1431–A1443 (2016). https://doi.org/10.1364/OE.24.0A1431

  38. M. Lv, X. Dong, X. Fang, B. Lin, S. Zhang, J. Ding, N. Yuan, A promising alternative solvent of perovskite to induce rapid crystallization for high-efficiency photovoltaic devices. RSC Adv. 5(26), 20521–20529 (2015). https://doi.org/10.1039/C4RA16253F

    Article  CAS  Google Scholar 

  39. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, H. Han, A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345(6194), 295–298 (2014). https://doi.org/10.1126/science.1254763

    Article  CAS  Google Scholar 

  40. C.W. Chen, H.W. Kang, S.Y. Hsiao, P.F. Yang, K.M. Chiang, H.W. Lin, Efficient and uniform planar-type perovskite solar cells by simple sequential vacuum deposition. Adv. Mater. 26(38), 6647–6652 (2014). https://doi.org/10.1002/adma.201402461

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ait Dads.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

(DOCX 7230 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dads, H.A., El Kissani, A., Hanaoui, S. et al. The effect of bromide precursor on the properties of organolead halide perovskite for solar cell fabricated under ambient condition. J Mater Sci: Mater Electron 32, 3797–3808 (2021). https://doi.org/10.1007/s10854-020-05123-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05123-7

Navigation