Skip to main content
Log in

Annealing effected Nb dopant activation and optoelectronic properties in anatase thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nb-doped anatase (NTO) thin film is a promising alternative to the conventionally used transparent conductors. However, its optoelectronic properties are strongly dependent on the fabrication condition. To this end, here the influence of the post-deposition annealing parameters on the dopant activation and thereby developed optoelectronic properties of these films are studied. In this regard, ~ 130 nm thick NTO films are first deposited on unheated quartz substrates using RF magnetron sputtering and then annealed at a range of temperature and time at ∼ 2.2 × 10–4 Pa. Though all these post-annealed films crystallized as anatase, their crystallinity, dopant atom activation and optoelectronic properties are significantly influenced by the annealing process parameters. Only at an optimized annealing condition highest crystallinity in the film along with the most effective Nb doping in Ti lattice sites is seen, which eventually yields to the highest carrier concentration of 0.84 × 1021 cm−3, carrier mobility of 1.86 cm2/V-s and optical bandgap of 3.51 eV. Consequently, this film shows the lowest electrical resistivity of 4.01 × 10–3 Ω cm. Moreover, in this paper, the mechanism of dopant atom activation as a function of annealing condition and thereby linked altered optoelectronic properties are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D.S. Ginley, J.D. Perkins, in Handbook of Transparent Conductors. ed. by D.S. Ginley, H. Hosono, D.C. Paine (Springer, New York, 2010), p. 1

    Google Scholar 

  2. A.E. Delahoy, S. Guo, in Handbook of Photovoltaic Science and Engineering, ed. By A. Luque, S. Hegedus (John Wiley & Sons, 2011), p. 716.

  3. K. Ellmer, Nat. Photonics 6, 809 (2012)

    Article  CAS  Google Scholar 

  4. P. P. Edwards, A. Porch, M. O. Jones, D. V. Morgan, and R. M. Perks, Dalt. Trans. 2995 (2004).

  5. H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgr, H. Morkoç, Superlattices Microstruct. 48, 458 (2010)

    Article  CAS  Google Scholar 

  6. T. Minami, Semicond. Sci. Technol. 20, S35 (2005)

    Article  CAS  Google Scholar 

  7. M. Norouzi, M. Kolahdouz, P. Ebrahimi, M. Ganjian, R. Soleimanzadeh, K. Narimani, H. Radamson, Thin Solid Films 619, 41 (2016)

    Article  CAS  Google Scholar 

  8. D. ming Chen, G. Xu, L. Miao, S. Nakao, P. Jin, (2011) Surf Coatings Technol. 206: 1020

  9. S. K. Mukherjee, H. W. Becker, A. P. Cadiz Bedini, A. Nebatti, C. Notthoff, D. Rogalla, S. Schipporeit, A. Soleimani-Esfahani, and D. Mergel, Thin Solid Films 568, 94 (2014).

  10. G. Wan, S. Wang, X. Zhang, M. Huang, Y. Zhang, W. Duan, L. Yi, Appl. Surf. Sci. 357, 622 (2015)

    Article  CAS  Google Scholar 

  11. M. Fallah, M.R. Zamani-Meymian, M. Rabbani, Superlattices Microstruct. 123, 242 (2018)

    Article  CAS  Google Scholar 

  12. T. Hitosugi, N. Yamada, N.L.H. Hoang, J. Kasai, S. Nakao, T. Shimada, T. Hasegawa, Thin Solid Films 517, 3106 (2009)

    Article  CAS  Google Scholar 

  13. M.A. Gillispie, M.F.A.M. van Hest, M.S. Dabney, J.D. Perkins, D.S. Ginley, J. Mater. Res. 22, 2832 (2007)

    Article  CAS  Google Scholar 

  14. D.A.H. Hanaor, C.C. Sorrell, J. Mater. Sci. 46, 855 (2011)

    Article  CAS  Google Scholar 

  15. M.S. Dabney, M.F.A.M. van Hest, C.W. Teplin, S.P. Arenkiel, J.D. Perkins, D.S. Ginley, Thin Solid Films 516, 4133 (2008)

    Article  CAS  Google Scholar 

  16. T. Hitosugi, A. Ueda, Y. Furubayashi, Y. Hirose, S. Konuma, T. Shimada, T. Hasegawa, Japanese (2007) J. Appl. Physics, 2 Lett. 46: 86

  17. Z.L. Tseng, L.C. Chen, J.F. Tang, M.F. Shih, S.Y. Chu, J. Electron. Mater. 46, 1476 (2017)

    Article  CAS  Google Scholar 

  18. K. Safeen, V. Micheli, R. Bartali, G. Gottardi, A. Safeen, H. Ullah, N. Laidani, Mater. Sci. Semicond. Process. 66, 74 (2017)

    Article  CAS  Google Scholar 

  19. C. Adomnitei, D. Luca, M. Girtan, I. Sandu, V. Nica, A.V. Sandu, D. Mardare, J. Optoelectron. Adv. Mater. 15, 519 (2013)

    CAS  Google Scholar 

  20. P.B. Nair, V.B. Justinvictor, G.P. Daniel, K. Joy, V. Ramakrishnan, P.V. Thomas, Appl. Surf. Sci. 257, 10869 (2011)

    Article  CAS  Google Scholar 

  21. D. Yoo, I. Kim, S. Kim, C.H. Hahn, C. Lee, S. Cho, Appl. Surf. Sci. 253, 3888 (2007)

    Article  CAS  Google Scholar 

  22. K.H. Hung, P.W. Lee, W.C. Hsu, H.C. Hsing, H.T. Chang, M.S. Wong, J. Alloys Compd. 509, 10190 (2011)

    Article  CAS  Google Scholar 

  23. S. Nikodemski, A.A. Dameron, J.D. Perkins, R.P. O’Hayre, D.S. Ginley, J.J. Berry, Sci. Rep. 6, 1 (2016)

    Article  Google Scholar 

  24. M.A. Gillispie, M.F.A.M. Van Hest, M.S. Dabney, J.D. Perkins, D.S. Ginley, magnetron sputter deposition of transparent conducting Nb-doped TiO2 films on SrTiO3. J. Appl. Phys. 101(033125), 1 (2007)

    Google Scholar 

  25. X. Yang, M.J. Zhang, Y. Min, M. Xu, Z. Mei, J. Liang, J. Hu, S. Yuan, S. Xiao, Y. Duan, F. Liu, H. Lin, Y. Lin, F. Pan, A.C.S. Appl, Mater. Interfaces 9, 29021 (2017)

    Article  CAS  Google Scholar 

  26. C. Wang, J. Li, and J. Dho, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 182, 1 (2014).

  27. N. L. H. Hoang, N. Yamada, T. Hitosugi, J. Kasai, S. Nakao, T. Shimada, and T. Hasegawa, Appl. Phys. Express 1, 115001 1 (2008).

  28. J. Liu, X. Zhao, L. Duan, M. Cao, H. Sun, J. Shao, S. Chen, H. Xie, X. Chang, C. Chen, Appl. Surf. Sci. 257, 10156 (2011)

    Article  CAS  Google Scholar 

  29. T. Potlog, P. Dumitriu, M. Dobromir, A. Manole, D. Luca, Mater. Des. 85, 558 (2015)

    Article  CAS  Google Scholar 

  30. H. Su, Y.T. Huang, Y.H. Chang, P. Zhai, N.Y. Hau, P.C.H. Cheung, W.T. Yeh, T.C. Wei, S.P. Feng, Electrochim. Acta 182, 230 (2015)

    Article  CAS  Google Scholar 

  31. H.C. Yao, M.C. Chiu, D.C. Tsai, C.J. Huang, F.S. Shieu, J. Electrochem. Soc. 155, 173 (2008)

    Article  Google Scholar 

  32. B. Bharti, S. Kumar, H.N. Lee, R. Kumar, Sci. Rep. 6, 1 (2016)

    Article  CAS  Google Scholar 

  33. H. Hajibabaei, O. Zandi, T.W. Hamann, Chem. Sci. 7, 6760 (2016)

    Article  CAS  Google Scholar 

  34. S. Pati, P. Banerji, S.B. Majumder, RSC Adv. 5, 61230 (2015)

    Article  CAS  Google Scholar 

  35. I. Ben Jemaa, F. Chaabouni, L. Presmanes, Y. Thimont, M. Abaab, A. Barnabe, and P. Tailhades, J. Mater. Sci. Mater. Electron. 27, 13242 (2016).

  36. H. Zheng, L. Li, Z. Sun, S. Yu, W. Luo, Appl. Surf. Sci. 362, 230 (2016)

    Article  CAS  Google Scholar 

  37. B. Zhang, F. Wei, Q. Wu, L. Piao, M. Liu, Z. Jin, J. Phys. Chem. C 119, 6094 (2015)

    Article  CAS  Google Scholar 

  38. W. Cher, S. Yick, S. Xu, Z.J. Han, K. Ostrikov, Funct. Mater. Lett. 4, 401 (2011)

    CAS  Google Scholar 

  39. M.M. Hasan, A.S.M.A. Haseeb, R. Saidur, H.H. Masjuki, M. Hamdi, Opt. Mater. (Amst). 32, 690 (2010)

    Article  CAS  Google Scholar 

  40. L. Cui, H.Y. Zhang, G.G. Wang, F.X. Yang, X.P. Kuang, R. Sun, J.C. Han, Appl. Surf. Sci. 258, 2479 (2012)

    Article  CAS  Google Scholar 

  41. F. Wang, M.Z. Wu, Y.Y. Wang, Y.M. Yu, X.M. Wu, L.J. Zhuge, Vacuum 89, 127 (2013)

    Article  CAS  Google Scholar 

  42. C. Guillén, J. Herrero, Vacuum 84, 924 (2010)

    Article  Google Scholar 

  43. B. Bin Wu, F. M. Pan, and Y. E. Yang, Chinese Phys. Lett. 28, 1 (2011).

  44. N. Bandaru, E. Panda, J. Alloys Compd. 789, 573 (2019)

    Article  CAS  Google Scholar 

  45. C. Singh, E. Panda, RSC Adv. 6, 48910 (2016)

    Article  CAS  Google Scholar 

  46. T.A. Patel, C.C. Singh, E. Panda, Mater. Sci. Semicond. Process. 75, 65 (2018)

    Article  CAS  Google Scholar 

  47. U. Ilyas, R.S. Rawat, T.L. Tan, P. Lee, R. Chen, H.D. Sun, L. Fengji, S. Zhang, Enhanced indirect ferromagnetic p-d exchange coupling of Mn in oxygen rich ZnO: Mn nanoparticles synthesized by wet chemical method. J. Appl. Phys. 111(033503), 1 (2012)

    Google Scholar 

  48. Y. Liu, Q. Peng, Z. P. Zhou, and G. Yang, Chinese Phys. Lett. 35, 048101 1 (2018).

  49. D.K. Kim, H.B. Kim, J. Mater. Sci. Mater. Electron. 27, 11366 (2016)

    Article  CAS  Google Scholar 

  50. J.P. Mathew, G. Varghese, J. Mathew, Chinese Phys. B 21, 1 (2012)

    Article  Google Scholar 

  51. S.D. Senol, A. Senol, O. Ozturk, M. Erdem, J. Mater. Sci. Mater. Electron. 25, 4992 (2014)

    Article  CAS  Google Scholar 

  52. N. Bandaru, E. Panda, Mater. Sci. Semicond. Process. 100, 220 (2019)

    Article  CAS  Google Scholar 

  53. M. Mickan, U. Helmersson, H. Rinnert, J. Ghanbaja, D. Muller, D. Horwat, Sol. Energy Mater. Sol. Cells 157, 742 (2016)

    Article  CAS  Google Scholar 

  54. M. Jullien, D. Horwat, F. Manzeh, R. Escobar Galindo, P. Bauer, J.F. Pierson, J.L. Endrino, Influence of the nanoscale structural features on the properties and electronic structure of Al-doped ZnO thin films: An X-ray absorption study Sol. Energy Mater. Sol. Cells 95, 2341 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India (Project No. EMR/2016/001182). Furthermore, we would like to thank Professor Gouthama (ACMS, IIT Kanpur, India) for the XPS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emila Panda.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementry Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 792 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manwani, K., Panda, E. Annealing effected Nb dopant activation and optoelectronic properties in anatase thin films. J Mater Sci: Mater Electron 32, 3273–3285 (2021). https://doi.org/10.1007/s10854-020-05076-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05076-x

Navigation