Skip to main content
Log in

Dielectric characteristics of pressureless sintered AlN-based composites in the 3–37 GHz frequency range

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In a system of dielectric matrix–conducting particles, the dielectric characteristics are analyzed over a wide frequency range (3–37 GHz). Experimental values of the dielectric constant ε′ and dielectric loss tangent tanδ are presented for pressureless sintered AlN-based composites with different contents of the conducting particles (Mo, W, and TiN) within the interval from 0% to the percolation threshold. Both the real ε′ and imaginary ε″ parts of the dielectric constant of the investigated composites monotonically increased, reaching maximum values (ε′ = 15 – 26.5, ε″ = 0.14–0.28) when the content of the conductive particles approached the percolation threshold. The dielectric loss tangent of the composites, depending on the conducting particle content, reached values of 0.0085 for AlN–16.6%Mo, 0.0095 for AlN–16%W, and 0.0105 for AlN–20.4%TiN. The dielectric losses ε″ in the AlN-based composites, as long as they remain nonconductive for the direct current, are low compared to losses of ε″ = 0.04 in polycrystalline AlN ceramics and exceed them by only 4–7 times. A relationship between the dielectric losses and the level of microwave absorption has been established. The dielectric characteristics, electrical resistance, and thermal conductivity of the produced AlN-based composites and their achievement of a high absorption of the microwave radiation (L = 23–32 dB/cm) make these materials promising bulk absorbers in microwave devices (TWTs, klystrons).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W.D. Kingery, Introduction to Ceramics (Wiley, New York, 1960).

    Google Scholar 

  2. J.P. Calame, M. Garven, D. Lobas et al., Broadband microwave and W–band characterization of BeO–SiC and AlN–based lossy composites for vacuum electronics, in IEEE Int. Vacuum Electron. Conf. held jointly with 2006 IEEE Int. Vacuum Electron Sources, Monterey, California, 25–27 April 2006, 37–38, AD022433 (2006)

  3. H.N. Ma, Z.M. Yang, J. Du, Influence of tungsten particles on the electrical properties of AlN ceramic. J. Mater. Sci. 23, 2181–2185 (2012)

    CAS  Google Scholar 

  4. Y. Zhang, Z. Yang, H. Ma et al., Influence of Mo addition on dielectric properties of AlN ceramic matrix composites. J. Phys. 152(1), 012063 (2009). https://doi.org/10.1088/1742-6596/152/1/012063

    Article  CAS  Google Scholar 

  5. J. Kang, G.X. Dong, Q.X. Liu, Research on properties of AlN–Mo composite ceramic. Adv. Mater. Res. 482–484, 1695–1698 (2012)

    Article  Google Scholar 

  6. E.N. Bukharin, A.S. Vlasov, A.A. Alekseev, Novel highly heat-conducting volumetric microwave absorbers [Novyye vysokoteploprovodnyye ob`yemnye SVCH poglotiteli]. Electron. Tekh. 6(235), 66–70 (1988). (in Russian)

    Google Scholar 

  7. P. Gao, C.C. Jia, W.B. Cao et al., Dielectric properties of spark plasma sintered AlN/SiC composite ceramics. Int. J. Miner. Metall. Mater. 21, 589–594 (2014). https://doi.org/10.1007/s12613-014-0946-1

    Article  CAS  Google Scholar 

  8. J. Gu, L. Sang, B. Pan, Thermal conductivity and high-frequency dielectric properties of pressureless sintered SiC–AlN multiphase ceramics. Materials 11, 969 (2018). https://doi.org/10.3390/ma11060969

    Article  CAS  Google Scholar 

  9. I.-L. Tangen, Y. Yu, T. Grande et al., Preparation and characterization of aluminium nitride–titanium nitride composites. J. Eur. Ceram. Soc. 24(7), 2169–2179 (2004). https://doi.org/10.1016/S0955-2219(03)00367-4

    Article  CAS  Google Scholar 

  10. I.P. Fesenko, M.M. Prokopiv, V.I. Chasnyk et al., Aluminum nitrid-based functional materials produced from nanodispersed and micron powders by hot presesing and pressureless sintering [Alyumonitrydni funktsional’ni materialy, oderzhani z nanodyspersnykh ta mikronnykh poroshkiv haryachym presuvannyam ta vil'nym spikannyam], ed. by M.V. Novikov (Kiev: IVTS ALKON, 2015) (in Ukrainian)

  11. V.I. Chasnyk, High–absorption aluminum nitride based microwave energy absorbers [Poglotiteli SVCh–energii na osnove nitrida alyuminiya s vysokim urovnem pogloshcheniya]. Tekhnol. Konstr. Electron. Appar. 4, 8–12 (2014). (in Russian)

    Google Scholar 

  12. V.I. Chasnyk, I.P. Fesenko, O.M. Kaidash et al., Theoretical and experimental estimations of the dielectric permittivity of AlN–Mo pressureless sintered composites at the frequencies of 3.2–10.0 GHz. J. Superhard. Mater. 39(4), 230–243 (2017). https://doi.org/10.3103/S1063457617040037

    Article  Google Scholar 

  13. V.I. Chasnyk, D.V. Chasnyk, I.P. Fesenko et al., Research of thermal conductivity, electrical resistivity and microwave absorption of microwave frequency radiation of AlN–Y2O3–Mo and AlN–Y2O3–TiN pressureless sintered composites. J. Superhard. Mater. 42(3), 165–176 (2020). https://doi.org/10.3103/S1063457620030028

    Article  Google Scholar 

  14. A.P. Feldstein, L.R. Yavich, V.P. Smirnov, Handbook on Waveguide Components [Cpravochnik po elementam volnovodnoy tekhniki]. (M.: Sovetskoye radio, 1967) (in Russian)

  15. I.V. Lebedev, Microwave equipment and devices [Tekhnika i pribory SVCH]. (M.: Vyssh. Shkola, 1970) (in Russian)

  16. T.A. Gryaznova, N.N. Ivanchinov, K.S. Karplyuk et al., Using the open end of a coaxial line as a microwave probe for plasma diagnostics [Ispol’zovaniye otkrytogo kontsa koaksial’noy linii v kachestve SVCH zonda dlya diagnostiki plazmy]. J. Tech. Phys. 5, 1081–1085 (1976). (in Russian)

    Google Scholar 

  17. I.P. Shashurin, E.G. Filonenko, Microwave probe for non-destructive testing of dielectric parameters [SVCH zond dlya nerazrushayushchego kontrolya parametrov dielektrikov]. Izvestiya VUZ. Radioelektronika 3, 11–20 (1999). (in Russian)

    Google Scholar 

  18. Yu.M. Bezborodov, T.N. Narytnik, V.B. Fedorov, Microwave filters on dielectric resistors [Fil'try SVCH na dielektricheskikh rezistorakh]. (Kiev. Technika, 1989) (in Russian)

  19. V.I. Chasnyk, I.P. Fesenko, Dielectric characteristics of the high heat-conducting AlN-ceramics in the frequency range 3–93 GHz. Tekhnol. Konstruir. Electron. Appar. 2–3, 11–14 (2013). (in Russian)

    Google Scholar 

  20. T.B. Serbenyuk, T.O. Prikhna, V.B. Sverdun et al., Effect of the additive of Y2O3 on the structure formation and properties of composite materials based on AlN–SiC. J. Superhard. Mater. 40(1), 8–15 (2018). https://doi.org/10.3103/S1063457618010021

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oksana Kaidash.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chasnyk, V., Chasnyk, D., Fesenko, I. et al. Dielectric characteristics of pressureless sintered AlN-based composites in the 3–37 GHz frequency range. J Mater Sci: Mater Electron 32, 2524–2534 (2021). https://doi.org/10.1007/s10854-020-05019-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05019-6

Navigation