Skip to main content
Log in

The effect of WO3/TeO2 molar concentration on the structural, optical, and thermoelectric properties of WO3–TeO2 binary thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, the structural, optical, and thermoelectric properties of WO3–TeO2 binary thin films deposited by spray pyrolysis have been studied. The WO3–TeO2 binary thin films were prepared by changing the molar ratio of WO3/TeO2 in solution with molar ratios (a) WO3 (0.15 M)–TeO2 (0.05 M), (b) WO3 (0.1 M)–TeO2 (0.1 M), and (c) WO3 (0.05 M)–TeO2 (0.15 M). Then, the structural, optical, and thermoelectric properties of the thin films were studied for before and after annealing conditions at T = 500 °C. The X-ray diffraction results showed that the structure of the deposited thin films was pre-amorphous, and after annealing at T = 500 °C, the WO2.92, TeO2, H2Te2O6, and WTe2 phases were formed. The field emission-scanning electron microscopy (FE-SEM) images showed that with annealing, the grains were crystalline in shape and almost uniform. Since the different phases in this composition have different structures, post-annealing FE-SEM images can be seen to have a nearly uniform distribution of polyhedral structures. The UV–Vis spectroscopy results showed that the bandgap of the thin films varies in the range of 2.3–3.94 eV. The bond structure of the nanoparticles has also been studied by FT-IR spectroscopy. Studies of thermoelectric properties (thermal and electrical conductivity) on thin films before and after annealing showed that the Seebeck coefficient for the (c) WO3 (0.05 M)–TeO2 (0.15 M) sample is larger than other thin films, and the majority of carriers are holes. The ZT coefficient for this sample was calculated as 1.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Yuliarto, N.L.W. Septiani, Y.V. Kaneti, M. Iqbal, G. Gumilar, M. Kim, J. Na, K.C.-W. Wu, Y. Yamauchi, Green synthesis of metal oxide nanostructures using naturally occurring compounds for energy and environmental applications. New J. Chem. 43, 15846–15856 (2019)

    Article  CAS  Google Scholar 

  2. X. Wang, Y. Han, X. Song, W. Liu, Y. Jin, W. Liu, H. Cui, An insight into the effects of transition metals on the thermal expansion of complex perovskite compounds: an experimental and density functional theory investigation. Phys. Chem. Chem. Phys. 20, 17781–17789 (2018)

    Article  CAS  Google Scholar 

  3. M.S. Burke, L.J. Enman, A.S. Batchellor, S. Zou, S.W. Boettcher, Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy) hydroxides: activity trends and design principles. Chem. Mater. 27, 7549–7558 (2015)

    Article  CAS  Google Scholar 

  4. B.D. Pelatt, J.F. Wager, D.A. Keszler, Elucidation of bonding trends from variability in atomic solid state energies. J. Solid State Chem. 274, 337–351 (2019)

    Article  CAS  Google Scholar 

  5. T. Sugahara, M. Ohtaki, T. Souma, Thermoelectric properties of double-perovskite oxide Sr2-x MxFeMoO6 (M = Ba, La). J. Ceram. Soc. Jpn. 116, 1278–1282 (2008)

    Article  CAS  Google Scholar 

  6. N. Wang, H. He, Y. Ba, C. Wan, K. Koumoto, Thermoelectric properties of Nb-doped SrTiO3 ceramics enhanced by potassium titanate nanowires addition. J. Ceram. Soc. Jpn. 118, 1098–1101 (2010)

    Article  Google Scholar 

  7. Y. Chen, X. Hou, C. Ma, Y. Dou, W. Wu, Review of development status of Bi2Te3-based semiconductor thermoelectric power generation. Adv. Mater. Sci. Eng. Article ID 1210562 (2018). https://doi.org/10.1155/2018/1210562

  8. H. Wang, Z. Hua, S. Peng, X. Dong, L. Dong, Y. Wang, Effect of CeO2 on the thermoelectric properties of WO3-based ceramics. Ceram. Int. 38, 1133–1137 (2012)

    Article  CAS  Google Scholar 

  9. X. Dong, H. Wang, Z. Hua, S. Peng, L. Dong, Y. Wang, Thermoelectric properties of WO3-based ceramics doped with Co2O3. J. Mater. Sci.: Mater. Electron. 23(1210–121), 4 (2012)

    Google Scholar 

  10. H. Wang, X. Dong, S. Peng, L. Dong, Y. Wang, Improvement of thermoelectric properties of WO3 ceramics by ZnO addition. J. Alloys Compd. 527, 204–209 (2012)

    Article  CAS  Google Scholar 

  11. H. Wang, Y. Gan, X. Dong, S. Peng, L. Dong, Y. Wang, Thermoelectric properties of Ti-doped WO3 ceramics. J. Mater. Sci.: Mater. Electron. 23, 2229–2234 (2012)

    CAS  Google Scholar 

  12. X. Dong, Y. Gan, Y. Wang, S. Peng, L. Dong, Effect of La2O3 on high-temperature thermoelectric properties of WO3. J. Alloys Compd. 581, 52–55 (2013)

    Article  CAS  Google Scholar 

  13. X. Dong, Y. Gan, S. Peng, L. Dong, Y. Wang, Enhanced thermoelectric properties of WO3 by adding SnO2. J. Mater. Sci.: Mater. Electron. 24, 4494–4498 (2013)

    CAS  Google Scholar 

  14. M. Yasukawa, Y. Ikeda, R. Tamura, Thermoelectric properties of Bi2O3-added WO3 ceramics. Ceram. Int. 45(1), 197–202 (2019)

    Article  CAS  Google Scholar 

  15. W. Di, J. Ning, D. Zhao, X. Wang, N. Liu, Synthesis and thermoelectric properties of WO3/Cu2SnSe3 composites. Mater. Sci. Forum 913, 811–817 (2018)

    Article  Google Scholar 

  16. M. Presečnik, S. Bernik, Microstructural and thermoelectric properties of WO3-doped Ca3Co4O9 ceramics. Ceram. Int. 42(14), 16103–16108 (2016)

    Article  Google Scholar 

  17. D. Zhao, M. Zuo, J. Leng, H. Geng, Synthesis and thermoelectric properties of CoSb3/WO3 thermoelectric composites. Intermetallics 40, 71–75 (2013)

    Article  CAS  Google Scholar 

  18. J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci. 2, 466–479 (2009)

    Article  CAS  Google Scholar 

  19. J. Zhou, F. Liu, J. Lin, X. Huang, J. Xia, B. Zhang, Q. Zeng, H. Wang, C. Zhu, L. Niu, X. Wang, W. Fu, P. Yu, T.R. Chang, C.H. Hsu, D. Wu, H.T. Jeng, Y. Huang, H. Lin, Z. Shen, C. Yang, L. Lu, K. Suenaga, W. Zhou, S.T. Pantelides, Large-area and highquality 2D transition metal telluride. Adv. Mater. 29, 1603471 (2017)

    Article  Google Scholar 

  20. M. Celikbilek, A.E. Ersundu, S. Aydin, Glass formation and characterization studies in the TeO2–WO3–Na2O system. J. Am. Ceram. Soc. 96(5), 1470–1476 (2013)

    Article  CAS  Google Scholar 

  21. N. Elkhoshkhany, R. Abbas, R. El-Mallawany, A.J. Fraih, Optical properties of quaternary TeO2–ZnO–Nb2O5–Gd2O3 glasses. Ceram. Int. 40, 14477–14481 (2014)

    Article  CAS  Google Scholar 

  22. J. Xu, C. Wang, T. Wang, Y. Wang, Q. Kang, Y. Liu, Y. Tian, Mechanisms for low-temperature direct bonding of Si/Si and quartz/quartz via VUV/O3 activation. RSC Adv. 8, 11528–11535 (2018)

    Article  CAS  Google Scholar 

  23. P. Wongkrua, T. Thongtem, S. Thongtem, Synthesis of h- and γ-MoO3 by refluxing and calcination combination: phase and morphology transformation, photocatalysis, and photosensitization. J. Nanomater. Article ID 702679, vol. 2013. http://dx.doi.org/10.1155/2013/70267922

  24. S.A. Khan, S.B. Khan, A.M. Asiri, Core–shell cobalt oxide mesoporous silica based efficient electro-catalyst for oxygen evolution. New J. Chem. 39, 5561 (2015)

    Article  CAS  Google Scholar 

  25. H. Fares, I. Jlassi, H. Elhouichet, M. Férid, Investigations of thermal, structural and optical properties of tellurite glass withWO3 adding. J. Non-Cryst. Solids 396–397, 1–7 (2014)

    Article  Google Scholar 

  26. M. Deepa, A.K. Srivastava, M. Kar, S.A. Agnihotry, A case study of optical properties and structure of sol-gel derived nanocrystalline electrochromic WO3 films. J. Phys. D 39(9), 1885–1893 (2006)

    Article  CAS  Google Scholar 

  27. J.H. Kim, K.-Y. Yoo, S. Shin, S.H. Youn, J.-H. Moon, Preparation and characterization of 70TeO2-30WO3 glass thin films by radio-frequency magnetron sputtering method. Solid State Phenom. 124–126, 487–490 (2007)

    Article  Google Scholar 

  28. X. Fan, Z. Rong, F. Yang, X. Cai, X. Han, G. Li, Effect of process parameters of microwave activated hot pressing on the microstructure and thermoelectric properties of Bi2Te3-based alloys. J. Alloys Compd. 630, 282–287 (2015)

    Article  CAS  Google Scholar 

  29. Y. Lan, A.J. Minnich, G. Chen, Z. Ren, Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Adv. Funct. Mater. 20, 357–376 (2010)

    Article  CAS  Google Scholar 

  30. S. Pan, J. Yuan, P. Zhang, M. Sokoluk, G. Yao, X. Li, Effect of electron concentration on electrical conductivity in in situ Al-TiB2 Nanocomposites. Appl. Phys. Lett. 116, 014102 (2020). https://doi.org/10.1063/1.5129817

    Article  CAS  Google Scholar 

  31. M.-K. Han, Y. Jin, D.-H. Lee, S.-J. Kim, Thermoelectric properties of Bi2Te3: CuI and the effect of its doping with Pb atoms. Materials 10, 1235 (2017). https://doi.org/10.3390/ma10111235

    Article  CAS  Google Scholar 

  32. G.S. Nolas, J. Poon, M. Kanatzidis, Recent developments in bulk thermoelectric materials. Mater. Res. Bull. 31(3), 199–205 (2006)

    Article  CAS  Google Scholar 

  33. A. Nozariasbmarz, J.S. Krasinski, D. Vashaee, N-type bismuth telluride nanocomposite materials optimization for thermoelectric generators in wearable applications. Materials 12, 1529 (2019). https://doi.org/10.3390/ma12091529

    Article  CAS  Google Scholar 

  34. W. Li, D. Stokes, B. Poudel, U. Saparamadu, A. Nozariasbmarz, H.B. Kang, S. Priya, High-efficiency skutterudite modules at a low temperature gradient. Energies 12, 4292 (2019). https://doi.org/10.3390/en12224292

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Shirpay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirpay, A., Mohagheghi, M.M.B. The effect of WO3/TeO2 molar concentration on the structural, optical, and thermoelectric properties of WO3–TeO2 binary thin films. J Mater Sci: Mater Electron 32, 1766–1777 (2021). https://doi.org/10.1007/s10854-020-04944-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04944-w

Navigation