Skip to main content
Log in

Effect of preparation techniques on BaWO4: structural, morphological, optical and electron density distribution analysis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The scheelite BaWO4 materials were prepared by co-precipitation and molten salt method. The crystallographic structure, optical behavior, morphology, and electronic charge distributions of the prepared BaWO4 were studied by various spectroscopic techniques such as X-ray power diffraction, photoluminescence spectroscopy, UV–Visible absorption spectroscopy, scanning electron microscopy and electron density distribution analysis, respectively. The micron-sized rock-like structured BaWO4 particles were obtained in the surface morphology. These structured BaWO4 exhibited intense blue emission peak at 430 nm when excited at 375 nm. The synthesized material revealed the high intense blue emission which attributed to the intrinsic transitions of [WO4]2− tetrahedrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G.K. Shurdumov, Z.V. Shurdumova, Z.A. Cherkesov et al., Synthesis of alkaline-earth metal tungstates in melts of [NaNO3–M(NO3)2]eut–Na2WO4 (M = Ca, Sr, Ba) systems. Russ. J. Inorg. Chem. 51(4), 531–532 (2006)

    Article  Google Scholar 

  2. B. Sun, Y. Liu, W. Zhao et al., Hydrothermal preparation and white-light-controlled resistive switching behavior of BaWO4 nanospheres. Nano-Micro Lett. 7(1), 80–85 (2014)

    Article  Google Scholar 

  3. W. Ge, H. Zhang, J. Wang et al., The thermal and optical properties of BaWO4 single crystal. J. Cryst. Growth 276(1–2), 208–214 (2005)

    Article  CAS  Google Scholar 

  4. J. Liao, B. Qiu, H.R. Wen et al., Luminescence properties of monodispersed spherical BaWO4:Eu3+ microphosphors for white light-emitting diodes. J. Mater. Sci. 46(5), 1184–1189 (2011)

    Article  CAS  Google Scholar 

  5. P. Afanasiev, Molten salt synthesis of barium molybdate and tungstate microcrystals. Mater. Lett. 61(23–24), 4622–4626 (2007)

    Article  CAS  Google Scholar 

  6. S.K. Stephen, N. Aloysius Sabu et al., Effect of calcination on the structural, optical and magnetic properties of BaWO4 nanoparticles synthesized by chemical precipitation. Indian J. Pure Appl. Phys. 57(1), 14–22 (2019)

    Google Scholar 

  7. Z. Song, J. Ma, X. Li et al., Electrochemical synthesis and characterization of barium tungstate crystallites. J. Am. Ceram. Soc. 92(6), 1354–1357 (2009)

    Article  CAS  Google Scholar 

  8. M. Mohamed Jaffer Sadiq, A. Samson Nesaraj, Soft chemical synthesis and characterization of BaWO4 nanoparticles for photocatalytic removal of Rhodamine B present in water sample. J. Nanostruct. Chem. 5(1), 45–54 (2015)

    Article  Google Scholar 

  9. A.K. Kunti, N. Patra, S.K. Sharma et al., Radiative transition probability enhancement of white light emitting Dy3+ doped and K+ co-doped BaWO4 phosphors via charge compensation. J. Alloys Compd. 735, 2410–2422 (2018)

    Article  CAS  Google Scholar 

  10. Y. Shen, W. Li, T. Li, Microwave-assisted synthesis of BaWO4 nanoparticles and its photoluminescence properties. Mater. Lett. 65(19–20), 2956–2958 (2011)

    Article  CAS  Google Scholar 

  11. P. Jena, S.K. Gupta, N.K. Verma et al., Energy transfer dynamics and time resolved photoluminescence in BaWO4:Eu3+ nanophosphors synthesized by mechanical activation. New J. Chem. 41(17), 8947–8958 (2017)

    Article  CAS  Google Scholar 

  12. M.C. Oliveira, L. Gracia, I.C. Nogueira et al., Synthesis and morphological transformation of BaWO4 crystals: experimental and theoretical insights. Ceram. Int. 42(9), 10913–10921 (2016)

    Article  CAS  Google Scholar 

  13. Y. Oaki, H. Imai, Room-temperature aqueous synthesis of highly luminescent BaWO4-polymer nanohybrids and their spontaneous conversion to hexagonal WO3 nanosheets. Adv. Mater. 18(14), 1807–1811 (2006)

    Article  CAS  Google Scholar 

  14. L.S. Cavalcante, J.C. Sczancoski, L.F. Lima et al., Synthesis, characterization, anisotropic growth and photoluminescence of BaWO4. Cryst. Growth Des. 9(2), 1002–1012 (2009)

    Article  CAS  Google Scholar 

  15. G. Zhou, M. Lü, Z. Xiu et al., Polymer micelle-assisted fabrication of hollow BaWO4 nanospheres. J. Cryst. Growth 276(1–2), 116–120 (2005)

    Article  CAS  Google Scholar 

  16. N. Wu, The Maximum Entropy Method (Springer, Berlin Heidelberg, 1997, 1–334 ISBN: 9783642084638)

  17. H.M. Rietveld, The Rietveld method. Phys. Scr. 89, 98002–98008 (2014)

    Article  Google Scholar 

  18. D. Sivaganesh, S. Saravanakumar, Sivakumar et al., Surfactants-assisted synthesis of ZnWO4 nanostructures: a view on photocatalysis, photoluminescence and electron density distribution analysis. Mater. Charact. 159, 110035–110050 (2020)

    Article  Google Scholar 

  19. International Centre of Diffraction Data, Powder Diffraction File, JCPDS File no. 00-008-0457

  20. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2(2), 65–71 (1969)

    Article  CAS  Google Scholar 

  21. S. Saravanakumar, D. Sivaganesh, K.S.S. Ali et al., Analysis of structural, optical and charge density distribution studies on Zn1xMnxS nanostructures. Phys. B 545(February), 134–140 (2018)

    Article  CAS  Google Scholar 

  22. R.C. Lima, M. Anicete-Santos, E. Orhan et al., Photoluminescent property of mechanically milled BaWO4 powder. J. Lumin. 126(2), 741–746 (2007)

    Article  CAS  Google Scholar 

  23. E.E. Campos-Zuñiga, I.L. Alonso-Lemus, V. Agarwal et al., Sol–gel synthesis for stable green emission in samarium doped borosilicate glasses. Ceram. Int. 45(18), 24052–24059 (2019)

    Article  Google Scholar 

  24. G. Blasse, B.C. Grabmaier, Luminescent Materials (Springer-Verlag, Berlin, 1994), pp. 1–121

    Book  Google Scholar 

  25. L.S. Cavalcante, J.C. Sczancoski, J.W.M. Espinosa et al., Photoluminescent behavior of BaWO4 powders processed in microwave-hydrothermal. J. Alloys Compd. 474(1–2), 195–200 (2009)

    Article  CAS  Google Scholar 

  26. T. Smith, J. Guild, The C.I.E. colorimetric standards and their use. Trans. Opt. Soc. 33(3), 74–134 (1932)

    Google Scholar 

  27. D.M. Collins, Electron density images from imperfect data by iterative entropy maximization. Nature 298, 49–51 (1982)

    Article  CAS  Google Scholar 

  28. R. Saravanan, Y. Ono, M. Isshiki et al., Electron density distribution in GaAs using MEM. J. Phys. Chem. Solids 64(1), 51–58 (2003)

    Article  CAS  Google Scholar 

  29. K.S. Syed Ali, R. Saravanan, S. Israel et al., Localized ferromagnetic charge ordering through charge density analysis in nano sized diluted magnetic semiconductor Co2+:ZnO. Phys. B 405(7), 1763–1769 (2010)

    Article  CAS  Google Scholar 

  30. S. Saravanakumar, S. Sasikumar, S. Israel et al., Structural, magnetic and charge-related properties of nano-sized cerium manganese oxide, a dilute magnetic oxide semiconductor. Mater. Sci. Semicond. Process. 17, 186–193 (2014)

    Article  CAS  Google Scholar 

  31. K. Momma, T. Ikeda, A.A. Belik et al., Dysnomia, a computer program for maximum-entropy method (MEM) analysis and its performance in the MEM-based pattern fitting. Powder Diffr. 28(3), 184–193 (2013)

    Article  CAS  Google Scholar 

  32. K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl. Crystallogr. 44(6), 1272–1276 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author D.S acknowledges the Kalasalingam Academy of Research and Education (KARE) for the support to complete the present research work. The authors are delighted to thank Dr. Arunachalam Lakshmanan, Dean (R&D) of Saveetha Engineering College, Chennai for PL measurements. The authors express their appreciation to the Deanship of Scientific research at King Khalid university for funding this work through research group program under grant number (R.G.P-174-42).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Saravanakumar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivaganesh, D., Saravanakumar, S., Sivakumar, V. et al. Effect of preparation techniques on BaWO4: structural, morphological, optical and electron density distribution analysis. J Mater Sci: Mater Electron 32, 1466–1475 (2021). https://doi.org/10.1007/s10854-020-04917-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04917-z

Navigation