Skip to main content
Log in

Utilization of positron annihilation and electrochemical impedance to study the microstructure variations and water diffusion of NO2-oxidative-damaged silicone rubber

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Silicone rubber is widely used in power grids, electronics and aerospace, because of its hydrophobicity, high flexibility, etc. However, it is susceptible to some environmental chemical factors, such as NO2 and ozone, which can induce chain scission, the generation of defects and the ingress of water. In this work, we systematically studied the microstructure variations and water diffusion behavior of high-temperature vulcanized (HTV) silicone rubber after NO2-induced oxidative damage. Microstructure evolution in silicone rubber was investigated by positron annihilation lifetime spectroscopy (PALS). The results show that the oxidation of NO2 significantly degrades organic matrices, which induces the decrease of crosslinking degree and the formation of defects compared to virgin samples. The water transportation was evaluated by electrochemical impedance spectroscopy (EIS), which showed that the diffusion coefficient, under the NO2 concentration of 28.75 mg L−1, is 106 times that of virgin sample with a water uptake of 31%. Particularly, when the concentration reaches the critical value around 17.25 mg L−1, the diffusion coefficient and water uptake increase sharply, and the calculated average porosity of samples also dramatically increases by 4 orders of magnitude. These indicate the formation of more nano- and micron holes, serving as a pointer for percolation of defects in silicone rubber bulk. The study of microstructure variations and water transportation can help us to understand the aging mechanism, design reasonable composite polymer materials and prevent the damage of chemical contact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Ansari, J.M. Varghese, K.R. Dayas, Polym. Adv. Technol. 20, 459 (2009)

    Article  CAS  Google Scholar 

  2. M.D. Banea, L.F.M. da Silva, Materialwiss. Werkstofftech. 41, 325 (2010)

    Article  CAS  Google Scholar 

  3. Z. Bai, Z. Zhang, J. Li, J. Guo, Nano Energy 65, 104012 (2019)

    Article  CAS  Google Scholar 

  4. A. Vanhoestenberghe, N. Donaldson, J. Neural Eng. 10, 031002 (2013)

    Article  CAS  Google Scholar 

  5. F. Abbasi, H. Mirzadeh, A.A. Katbab, Polym. Int. 50, 1279 (2001)

    Article  CAS  Google Scholar 

  6. A. Rahimi, A. Mashak, Plast. Rubber Compos. 42, 223 (2013)

    Article  CAS  Google Scholar 

  7. S. Ansorge, F. Schmuckand, K.O. Papailiou, IEEE Trans. Dielectr. Electr. Insul. 19, 209 (2012)

    Article  CAS  Google Scholar 

  8. R. Hackaml, IEEE Trans. Dielectr. Electr. Insul. 6, 557 (1999)

    Article  Google Scholar 

  9. R.S. Gorur, T. Orbeck, IEEE Trans. Electr. Insul. 26, 1064 (1991)

    Article  CAS  Google Scholar 

  10. Y. Zhu, S. Xu, Y. Li, IEEE Access 7, 174932 (2019)

    Article  Google Scholar 

  11. Q. Zhao, X. Li, J. Gao, Polym. Degrad. Stab. 94, 339 (2009)

    Article  CAS  Google Scholar 

  12. J. Wu, K. Niu, B. Su, Y. Wang, Polym. Degrad. Stab. 151, 126 (2018)

    Article  CAS  Google Scholar 

  13. A. Jha, A.K. Bhowmick, Polym. Degrad. Stab. 62, 575 (1998)

    Article  CAS  Google Scholar 

  14. Y. Zhu, Polym. Test. 74, 14 (2019)

    Article  CAS  Google Scholar 

  15. Y. Gao, X. Liang, W. Bao, S. Li, C. Wu, IEEE Trans. Dielectr. Electr. Insul. 25, 919 (2018)

    Article  CAS  Google Scholar 

  16. Y. Gao, X. Liang, W. Bao, C. Wu, S. Li, High Volt. 4, 89 (2019)

    Article  Google Scholar 

  17. D.L. Armentrout, M. Kumosa, T.S. McQuarrie, IEEE Trans. Dielectr. Electr. Insul. 18, 684 (2003)

    CAS  Google Scholar 

  18. A.R. Chughtai, D.M. Smith, M.S. Kumosa, Compos. Sci. Technol. 58, 1641 (1998)

    Article  CAS  Google Scholar 

  19. G.J.M. Velders, G.P. Geilenkirchen, R. de Lange, Atmos. Environ. 45, 3025 (2011)

    Article  CAS  Google Scholar 

  20. S.K. Guttikunda, P. Jawahar, Atmos. Environ. 92, 449 (2014)

    Article  CAS  Google Scholar 

  21. B.N. Duncan, L.N. Lamsal, A.M. Thompson et al., J. Geophys. Res. Atmos. 121, 976 (2016)

    Article  CAS  Google Scholar 

  22. N. Rehbein, V. Cooray, J. Electrostat. 51–52, 333 (2001)

    Article  Google Scholar 

  23. F. Coppens, R. Berton, A. Bondiou-Clergerie, I. Gallimberti, J. Geophys. Res. Atmos. 103, 10769 (1998)

    Article  CAS  Google Scholar 

  24. E.Y. Davydov, I.S. Gaponova, T.V. Pokholok, G.B. Pariiskii, J. Polym. Environ. 19, 312 (2010)

    Article  CAS  Google Scholar 

  25. H.E. Ungnade, R.A. Smiley, J. Org. Chem. 21, 575 (1956)

    Article  Google Scholar 

  26. C. Djerassi, E. Lund, E. Bunnenberg, B. Sjöberg, J. Am. Chem. Soc. 83, 2307 (1961)

    Article  CAS  Google Scholar 

  27. H. Kambe, R. Yokota, S. Isoda, Bull. Inst. Space Aeronaut. Sci. 14, 497 (1978)

    CAS  Google Scholar 

  28. P. Martinez, D.K. Brandvold, Atmos. Environ. 30, 4177 (1996)

    Article  CAS  Google Scholar 

  29. F. Bernard, M. Cazaunau, Y. Mu et al., J. Phys. Chem. A 117, 14132 (2013)

    Article  CAS  Google Scholar 

  30. I. Oluwoye, M. Altarawneh, J. Gore, H. Bockhorn, B.Z. Dlugogorski, J. Phys. Chem. C 120, 3766 (2016)

    Article  CAS  Google Scholar 

  31. T. Ogihara, Bull. Chem. Soc. Jpn. 36, 58 (1963)

    Article  CAS  Google Scholar 

  32. T. Ogihara, S. Tsuchiya, K. Kuratani, Bull. Chem. Soc. Jpn. 38, 978 (1965)

    Article  CAS  Google Scholar 

  33. H.H.G. Jellinek, F. Flajsman, F.J. Kryman, J. Appl. Polym. Sci. 13, 107 (1969)

    Article  CAS  Google Scholar 

  34. Y.C. Jean, J.D. Van Horn, W.-S. Hung, K.-R. Lee, Macromolecules 46, 7133 (2013)

    Article  CAS  Google Scholar 

  35. K.-S. Liao, H. Chen, S. Awad et al., Macromolecules 44, 6818 (2011)

    Article  CAS  Google Scholar 

  36. R. Zhang, J. Robles, J. Kang, H. Samha, H.M. Chen, Y.C. Jean, Macromolecules 45, 2434 (2012)

    Article  CAS  Google Scholar 

  37. Z. Wang, C. Yin, Y. Luo et al., J. Appl. Polym. Sci. 135, 45803 (2017)

    Article  CAS  Google Scholar 

  38. Z. Wang, C. Yin, J. Li et al., J. Mater. Sci. 53, 12871 (2018)

    Article  CAS  Google Scholar 

  39. M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey, D. Johnson, J. Colloid Interface Sci. 137, 11 (1990)

    Article  CAS  Google Scholar 

  40. J.R. Hollahan, G.L. Carlson, J. Appl. Polym. Sci. 14, 2499 (1970)

    Article  CAS  Google Scholar 

  41. H. Hillborg, U.W. Gedde, Polymer 39, 1991 (1998)

    Article  CAS  Google Scholar 

  42. Y. Gao, J. Wang, X. Liang, Z. Yan, Y. Liu, Y. Cai, IEEE Trans. Dielectr. Electr. Insul. 21, 2428 (2014)

    Article  CAS  Google Scholar 

  43. Y. Nagai, T. Nonaka, M. Hasegawa et al., Phys. Rev. B 60, 11863 (1999)

    Article  CAS  Google Scholar 

  44. C. He, V.P. Shantarovich, T. Suzuki, S.V. Stepanov, R. Suzuki, M. Matsuo, J. Chem. Phys. 122, 214907 (2005)

    Article  CAS  Google Scholar 

  45. J. Zhang, H. Chen, Y. Li, R. Suzuki, T. Ohdaira, Y.C. Jean, Radiat. Phys. Chem. 76, 172 (2007)

    Article  CAS  Google Scholar 

  46. Y.C. Jean, J. Zhang, H. Chen, Y. Li, G. Liu, Spectrochim. Acta A 61, 1683 (2005)

    Article  CAS  Google Scholar 

  47. S.K. Rath, S.K. Sharma, K. Sudarshan, J.G. Chavan, T.U. Patro, P.K. Pujari, Polymer 101, 358 (2016)

    Article  CAS  Google Scholar 

  48. X. Hong, Y.C. Jean, H. Yang, S.S. Jordan, W.J. Koros, Macromolecular 29, 7859 (1996)

    Article  CAS  Google Scholar 

  49. I.K. MacKenzie, P.Z. Ghorayshi, Solid State Commun. 55, 125 (1985)

    Article  CAS  Google Scholar 

  50. C. Fernández-Sánchez, C.J. McNeil, K. Rawson, Trac-Trends Anal. Chem. 24, 37 (2005)

    Article  CAS  Google Scholar 

  51. S. Amand, M. Musiani, M.E. Orazem, N. Pébère, B. Tribollet, V. Vivier, Electrochim. Acta 87, 693 (2013)

    Article  CAS  Google Scholar 

  52. D.M. Brasher, A.H. Kingsbury, J. Appl. Chem. 4, 62 (1954)

    Article  CAS  Google Scholar 

  53. Z. Kolek, Prog. Org. Coat. 30, 287 (1997)

    Article  CAS  Google Scholar 

  54. C.H. Hsu, F. Mansfeld, Corrosion 57, 747 (2001)

    Article  CAS  Google Scholar 

  55. B. Liu, Y. Li, H. Lin, C. Cao, Corros. Sci. 44, 2657 (2002)

    Article  CAS  Google Scholar 

  56. F. Bellucci, L. Nicodemo, T. Monetta, M.J. Kloppers, R.M. Latanision, Corros. Sci. 33, 1203 (1992)

    Article  CAS  Google Scholar 

  57. F. Deflorian, L. Fedrizzi, P.L. Bonora, Corros. Sci. 38, 1697 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research &Development Program of China (No. 2019YFA0210003), the China Postdoctoral Science Foundation (2020M682609), the Science and Technology Project of China Southern Power Grid Co., Ltd. (GDKJXM20200403) and open fund of the Guangdong Key Laboratory of Electric Power Equipment Reliability in 2020 (GDDKY2020KF01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Fang.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wang, Z., Luo, Y. et al. Utilization of positron annihilation and electrochemical impedance to study the microstructure variations and water diffusion of NO2-oxidative-damaged silicone rubber. J Mater Sci: Mater Electron 32, 894–907 (2021). https://doi.org/10.1007/s10854-020-04867-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04867-6

Navigation