Skip to main content
Log in

The effect of gamma-ray irradiation on bulk optical plastic materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We present our study of the effect of gamma-ray irradiation on bulk optical plastic materials as follows: three types of sheets commonly used for eyeglass lenses (CR-39, MR-8 and Trivex), cyclo olefin polymer ZEONEX E48R, styrene methyl methacrylate NAS21, polymethyl methacrylate PLEXIGLAS®7N, polyphenylsulfone EUROPLEX® PPSU, and poly(n-methyl methacrylimide PLEXIMID®8813. We used the panoramic gamma-radiation facility with 60Co source with applied doses 14.6 kGy and 54.2 kGy. For the thought properties, we measured the transmission spectra from 200 to 1800 nm and refractive indices using the prism coupling technique at six wavelengths 532.0, 654.2, 846.4, 1308.2, 1549.1, and 1652.1 nm. We also studied the possibility of using several approximation methods for evaluating the refractive indices including Cauchy, Cauchy–Schott, Herzberger, Sellmeier, Sellmeier-2, and Sellmeier with an infrared correction. The measurements showed that the most precise determination model of the refractive indices was obtained by the Sellmeier approximation with an infrared correction. The transmission spectra measurement showed that the CR-39 and EUROPLEX® PPSU polymers did not change significantly after the irradiation and the refractive indices measurement showed that ZEONEX E48R and EUROPLEX® PPSU did not change the refractive indices values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L. Eldada, L.W. Shacklette, Advances in polymer integrated optics. IEEE J. Select. Topics Quantum Electron. 6, 54–68 (2000)

    Article  CAS  Google Scholar 

  2. H. Ma, A.K.Y. Jen, L.R. Dalton, Polymer-based optical waveguides: materials, processing, and devices. Adv. Mater. 4(19), 1339–1365 (2002)

    Article  Google Scholar 

  3. W.H. Wong, K.K. Liu, K.S. Chan, E.Y.B. Pun, Polymer devices for photonic applications. J. Crystal Growth 288(1), 100–104 (2006)

    Article  CAS  Google Scholar 

  4. V. Prajzler, M. Neruda, P. Jasek, P. Nekvindova, The properties of free-standing epoxy polymer multi-mode optical waveguides. Microsys. Technol. 25(1), 257–264 (2019)

    Article  CAS  Google Scholar 

  5. B. Beche, Integrated photonics devices on SU8 organic materials. Int. J. Phys. Sci. 5(6), 612–618 (2010)

    CAS  Google Scholar 

  6. R.. La. Dangel, A. Porta, D. Jubin, F. Horst, N. Meier, M. Seifried, B.J. Offrein, Polymer waveguides enabling scalable low-loss adiabatic optical coupling for silicon photonics. IEEE J. Sel Topics Quantum Electron. 24(4), 8200211 (2018)

    Article  Google Scholar 

  7. N.G. Sultanova, S.N. Kasarova, I.D. Nikolov, Characterization of optical properties of optical polymers. Optic. Quantum Electron. 45, 221–232 (2013)

    Article  CAS  Google Scholar 

  8. S.A. Siddhartha, D. Kapil, K.R. Suresh, J.B.M. Krishna, M.A. Wahab, Effect of gamma radiation on the structural and optical properties of Polyethyleneterephthalate (PET) polymer. Radiat. Phys. Chem. 81(4), 458–462 (2012)

    Article  CAS  Google Scholar 

  9. F. Mahasin, H. Al-Kadhemy, A. Abdulmunem Saeed, R.I. Khaleel, F.J.K. Al-Nuaimi, Effect of gamma ray on optical characteristics of (PMMA/PS) polymer blends. J. Theor. Appl. Phys. 11, 201–207 (2017)

    Article  Google Scholar 

  10. M.F. Zaki, Gamma-induced modification on optical band gap of CR-39 SSNTD. J. Phys. D: Appl. Phys. 41(17), 175404 (2018)

    Article  Google Scholar 

  11. S.A. El-Fiki, M.S. Abd El-Wahab, M. El-Sherief, S.A. Nooh, M.A. El Fiki, Investigation of the effect of gamma rays on optical properties of polymers. Radiat. Phys. Chem. 47(5), 761–764 (1996)

    Article  CAS  Google Scholar 

  12. A.F. Saad, M.H. Ibraheim, A.M. Nwara, S.A. Kandil, Modifications in the optical and thermal properties of a CR-39 polymeric detector induced by high doses of gamma-radiation. Radiat. Phys. Chem. 145, 122–129 (2018)

    Article  CAS  Google Scholar 

  13. T. Ozdemir, A. Saglam, F.B. Ozdemir, A.U. Keskiner, The evaluation of spectral transmittance of optical eye-lenses. Optik 127(4), 2062–2068 (2016)

    Article  CAS  Google Scholar 

  14. V. Kalima, J. Pietarinen, S. Siitonen, J. Immonen, M. Suvanto, M. Kuittinen, K. Monkkonen, T.T. Pakkanen, Transparent thermoplastics: replication of diffractive optical elements using micro-injection molding. Optic. Mater. 30(2), 285–291 (2007)

    Article  CAS  Google Scholar 

  15. D. Bosc, A. Maalouf, F. Henrio, S. Haesaert, Strengthened poly(methacrylate) materials for optical waveguides and integrated functions. Optic. Mater. 30(10), 1514–1520 (2008)

    Article  CAS  Google Scholar 

  16. V. Prajzler, J. Klapuch, O. Lyutakov, I. Huttel, J. Spirkova, P. Nekvindova, V. Jerabek, Design, fabrication and properties of rib poly(methylmethacrylimide) optical waveguides. Radioengineering 20(2), 479–485 (2011)

    Google Scholar 

  17. R. Ulrich, R. Torge, Measurement of thin film parameters with a prism coupler. Appl. Optic. 12(12), 2901–2908 (1973)

    Article  CAS  Google Scholar 

  18. V. Prajzler, P. Nekvindova, J. Spirkova, M. Novotny, The evaluation of the refractive indices of bulk and thick polydimethylsiloxane and polydimethyl-diphenylsiloxane elastomers by the prism coupling technique. J. Mater. Sci. Mater. Electron. 28(11), 7951–7961 (2017)

    Article  CAS  Google Scholar 

  19. Singh, J. Optical Properties of Materials and Their Applications. Wiley Series in Materials for Electronic & Optoelectronic Applications. 2020, ISBN-13: 978-1119506317.

  20. Jenkins F.A., White H.E. Fundamentals of Optics, 4th ed., McGraw-Hill, Inc. (1981).

  21. M. Herzberger, Modern Geometrical Optics (E. Kodak Com, Rochester, New York, Chapter XII, 1958)

    Google Scholar 

  22. G. Ghosh, Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses. Appl Optic. 36(7), 1540–1546 (1997)

    Article  CAS  Google Scholar 

  23. N.G. Sultanova, I.D. Nikolov, C.D. Ivanov, Measuring the refractometric characteristics of optical plastics. Optic Quantum Electro. 35(1), 21–34 (2003)

    Article  CAS  Google Scholar 

  24. P. Loiko, P. Segonds, P.L. Inacio, A. Peña, J. Debray, D. Rytz, V. Filippov, K. Yumashev, M.C. Pujol, X. Mateos, M. Aguiló, F. Díaz, M. Eichhorn, B. Boulanger, Refined orientation of the optical axes as a function of wavelength in three monoclinic double tungstate crystals KRE(WO4)2 (RE = Gd, Y or Lu). Optic. Mater. Express 6(9), 2984–2990 (2016)

    Article  CAS  Google Scholar 

  25. I.H. Malitson, Interspecimen comparison of the refractive index of fused silica. J. Optic. Soc. Am. 55(10), 1205–1209 (1965)

    Article  CAS  Google Scholar 

  26. Metricon's Model 2010 https://www.metricon.com/

  27. G. Beadie, M. Brindza, R.A. Flynn, A. Rosenberg, J.S. Shirk, Refractive index measurements of poly(methyl methacrylate) (PMMA) from 0.4–1.6 μm. Appl Optic 54(31), F139–F143 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Our research has been supported by the Czech Technical University in Prague with the SGS program (SGS20/175/OHK3/3T/13) and Centre of Advanced Applied Natural Sciences", Reg. No. CZ.02.1.01/0.0/0.0/16_019/0000778, supported by the Operational Program Research, Development and Education, co-financed by the European Structural and Investment Funds and the state budget of the Czech Republic. We would like to also thank the Radiation chemistry and environmental qualification department, ÚJV Řež, a. s. for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Václav Prajzler.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prajzler, V., Chlupatý, V. & Šaršounová, Z. The effect of gamma-ray irradiation on bulk optical plastic materials. J Mater Sci: Mater Electron 31, 22599–22615 (2020). https://doi.org/10.1007/s10854-020-04772-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04772-y

Navigation