Skip to main content
Log in

Back-side-illuminated CCDs for EBCCDs: “dead-layer” compensation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The near-surface “dead-layer” nature and its negative impact on back-side-illuminated charge-coupled devices (CCDs) have been investigated in detail. Special attention is devoted to the analysis of methods for the “dead-layer” eliminating. The study of this phenomenon was carried out using the technique of electrochemical capacitance–voltage profiling by measuring, simulating, and analyzing free charge carrier concentration profiles of back-side-illuminated CCDs, taken at various technological stages. Different techniques of annealing for ion implanted CCDs were used. By analyzing and comparison of free charge carriers concentration profiles, the recommendations for optimization of technology for back-thinned CCDs were proposed, aiming to increase of pulling field and decrease the impact of surface potential on charge carrier transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.T. Bosiersa, I.M. Petersa, C. Draijera, A. Theuwissen, Technical challenges and recent progress in CCD imagers. Nucl. Instrum. Method A. 565(1), 148–156 (2006). https://doi.org/10.1016/j.nima.2006.05.033

    Article  CAS  Google Scholar 

  2. L. Marcu, Fluorescence lifetime techniques in medical applications. Ann. Biomed. Eng. 40(2), 304–331 (2012). https://doi.org/10.1007/s10439-011-0495-y

    Article  Google Scholar 

  3. O. Sergiyenko, J.C. Rodríguez-Quiñonez, Developing and Applying Optoelectronics in Machine Vision (IGI Global, Hershey, 2016)

    Google Scholar 

  4. S.B. Howell, Handbook of CCD Astronomy (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  5. Burke et al., CCD imager development for astronomy. Lincoln Lab. J. 16, 393–412 (2007)

    Google Scholar 

  6. B.E. Woodgate, J.C. Blades, UV and visible detectors. Hubble’s science legacy: future optical/ultraviolet astronomy from space. ASP Conf. Proc. 291, 271–280 (2003)

    CAS  Google Scholar 

  7. M. Lesser, A summary of charge-coupled devices for astronomy. Publ. Astronom. Soc. Pac. 127, 1097–1104 (2015). https://doi.org/10.1086/684054

    Article  Google Scholar 

  8. K.R. Spring, M.W. Davidson, Concepts in Digital Imaging Technology: Quantum Efficiency. (Hamamatsu, 2020), https://hamamatsu.magnet.fsu.edu/articles/quantumefficiency.html. Accessed 14 June 2020

  9. D. Durini, High Performance Silicon Imaging: Fundamentals and Applications of CMOS and CCD sensors (Woodhead Publishing, Cambridge, 2014)

    Google Scholar 

  10. M.R. Ainbund, D.E. Mironov, V.I. Zubkov, Hybrid photoelectronic devices (a review). Usp. Prikl. Fiz. 6, 401–408 (2018)

    Google Scholar 

  11. B.L. Wall, J.F. Amsbaugh, A. Beglarian, T. Bergmann, H.C. Bichsel, L.I. Bodine, N.M. Boyd, T.H. Burritt, Z. Chaoui, T.J. Corona et al., Dead layer on silicon p-i-n diode charged-particle detectors. Nucl. Instr. Method A. 744, 73–79 (2014). https://doi.org/10.1016/j.nima.2013.12.048

    Article  CAS  Google Scholar 

  12. G. Williams Jr., A. Rheinheimer, V. Aebi, K. Costello, Electron bombarded back-illuminated CCD sensors for low light level imaging applications. SPIE Proc. 2415, 211–235 (1995). https://doi.org/10.1117/12.206518

    Article  Google Scholar 

  13. J. Manfredi et al., On determining dead layer and detector thicknesses for a position-sensitive silicon detector. Nucl. Instrum. Meth. A. 888, 177–183 (2018). https://doi.org/10.1016/j.nima.2017.12.082

    Article  CAS  Google Scholar 

  14. A. Owens, XANES fingerprinting: a technique for investigating CCD surface structures and measuring dead layer thicknesses. Nucl. Instrum. Methods Phys. Res. A. 526, 391–398 (2004). https://doi.org/10.1016/j.nima.2004.01.070

    Article  CAS  Google Scholar 

  15. R. Bedington, D. Kataria, D. Walton, Using a CCD for the direct detection of electrons in a low energy space plasma spectrometer. J. Instrum. 7, C01079 (2012). https://doi.org/10.1088/1748-0221/7/01/C01079

    Article  Google Scholar 

  16. G.E. Yakovlev, I.A. Nyapshaev, I.S. Shakhrai, D.A. Andronikov, V.I. Zubkov, E.I. Terukov, Through concentration profiling of heterojunction solar cells. Tech. Phys. Lett. 45, 890–893 (2019). https://doi.org/10.1134/S106378501909013X

    Article  CAS  Google Scholar 

  17. S.R. Shortes et al., Development of a thinned backside illuminated charge-coupled device image. Proc. IEDM. 415, 27 (1973)

    Google Scholar 

  18. G.E. Yakovlev, D.S. Frolov, A.V. Zubkova, E.E. Levina, V.I. Zubkov, A.V. Solomonov, O.K. Sterlyadkin, S.A. Sorokin, Investigation of ion-implanted photosensitive silicon structures by electrochemical capacitance-voltage profiling. Semiconductors 50, 320–325 (2016). https://doi.org/10.1134/S1063782616030234

    Article  CAS  Google Scholar 

  19. D.S. Frolov, G.E. Yakovlev, V.I. Zubkov, Technique for the electrochemical capacitance-voltage profiling of heavily doped structures with a sharp doping profile. Semiconductors 53, 268–272 (2019). https://doi.org/10.1134/S1063782619020076

    Article  CAS  Google Scholar 

  20. J. Janesick, Producing CCD imaging sensor with flashed backside metal film. United States Patent, #4760031 (1988)

  21. M. Lesser, CCD backside coatings optimized for 200–300 nm observations. SPIE Proc. 4139, 8–15 (2000). https://doi.org/10.1117/12.410521

    Article  CAS  Google Scholar 

  22. S. Nikzad, A. Smith, T. Elliott, T. Jones, T. Tombrello, Q. Yu, Low-energy electron detection with delta-doped CCDs. SPIE Proc. 3019, 241–248 (1997). https://doi.org/10.1117/12.275183

    Article  CAS  Google Scholar 

  23. J. Blacksberg, M. Hoenk, T. Elliott, CCD backside coatings optimized for 200–300 nm observations. Appl. Phys. Lett. 87, 254101 (2005). https://doi.org/10.1063/1.2149181

    Article  CAS  Google Scholar 

  24. J. Blacksberg, S. Nikzad, M. Hoenk, S. Holland, W. Kolbe, Near-100% quantum efficiency of delta doped Llrge-format UV-NIR silicon imagers. IEEE Trans. Electron Devices. 55, 3402–3406 (2008). https://doi.org/10.1109/TED.2008.2006779

    Article  CAS  Google Scholar 

  25. C.-M. Lee, S.-P. Chang, S.-J. Chang, C.-I. Wu, Fabrication of high-efficiency silicon solar cells by ion implant process. Int. J. Electrochem. Sci. 8, 7634–7645 (2013)

    CAS  Google Scholar 

  26. M. Hackenberg, K. Huet, R. Negru, J. Venturini, G. Fisicaro, A. La Magna, P. Pichler, Modeling boron profiles in silicon after pulsed excimer laser annealing. AIP Conf. Proc. 1496, 241–244 (2012). https://doi.org/10.1063/1.4766533

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors expresses special gratitude to JSC “NRI “Electron” (St. Petersburg, Russia) and JSC “ELAR” (St. Petersburg, Russia) for the samples provided for measurements and personally to M.R. Ainbund (JSC “NRI “Electron”), O.K. Sterlyadkin (JSC “NRI “Electron”), V.G. Kossov (JSC “ELAR”), and D. Bolshukhin (INNOVAVENT GmbH) for valuable advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Yakovlev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovlev, G., Zubkov, V. Back-side-illuminated CCDs for EBCCDs: “dead-layer” compensation. J Mater Sci: Mater Electron 32, 73–80 (2021). https://doi.org/10.1007/s10854-020-04631-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04631-w

Navigation