Skip to main content

Advertisement

Log in

Electro-codeposition of V2O5-polyaniline composite on Ni foam as an electrode for supercapacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To fulfill the increasing energy demand, it is necessary to develop such an electrode material for pseudocapacitors having a high energy density, better cycle life, and potential for commercialization. Herein, we report an electro-codeposition technique to fabricate a high-performance V2O5-PANi composite deposited on the metallic Nickel foam substrate as an electrode for pseudocapacitors. Ni foam serves as a porous and conductive framework and therefore shortens the ions diffusion pathway. Composite shows good performance than pure V2O5 and PANi due to their synergistic effect. X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX) analysis have confirmed the successful incorporation of metal oxide into the polymer backbone. Moreover, V2O5-PANi composite exhibited a very wide voltage window of 2.5V (between − 1 and 1.5V vs. SCE), the highest specific capacitance of 1115 F/g, and less charge transfer resistance. The ability to prepare composite electrodes with high performance via a binder-free electro-codeposition technique could open up new prospects for high energy density pseudocapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F. Meng, Y. Ding, Sub-micrometer-thick all-solid-state supercapacitors with high power and energy densities. Adv. Mater. 23, 4098–4102 (2011)

    CAS  Google Scholar 

  2. W. Qiong, X. Yuxi, Supercapacitors based on flexible graphene/polyaniline nanofiber composite film. ACS Nano 4, 1963–1970 (2010)

    Google Scholar 

  3. Z. Weng, Y. Su, D.W. Wang, F. Li, J. Du, Graphene–cellulose paper flexible supercapacitors. Adv. Energy Mater. 1, 917–922 (2011)

    CAS  Google Scholar 

  4. S. Hussain, X. Yang, M.K. Aslam, A. Shaheen, M.S. Javed, N. Aslam, Robust TiN nanoparticles polysulfide anchor for Li–S storage and diffusion pathways using first principle calculations. Chem. Eng. J. 391, 123595 (2020)

    CAS  Google Scholar 

  5. B. Zou, Y. Liang, X. Liu, Electrodeposition and pseudocapacitive properties of tungsten oxide/polyaniline composite. J. Power Sources. 196, 4842–4848 (2011)

    CAS  Google Scholar 

  6. C. Peng, S. Zhang, G.Z. Chen, Carbon nanotube and conducting polymer composites for supercapacitors. Prog. Nat. Sci. 18, 777–788 (2008)

    CAS  Google Scholar 

  7. S. Sarangapani, B.V. Tilak, C.P. Chen, Materials for electrochemical capacitors theoretical and experimental constraints. J. Electrochem. Soc. 143, 3791 (1996)

    CAS  Google Scholar 

  8. J. Hwang, H.M. Kim, S. Shin, Designing a high-performance lithium–sulfur batteries based on layered double hydroxides–carbon nanotubes composite cathode and a dual-functional graphene– polypropylene–Al2O3 separator. Adv. Funct. Mater. 28, 1704294 (2018)

    Google Scholar 

  9. H. Liu, D. Zhao, Y. Liu, P. Hu, X. Wu, H. Xia, Boosting energy storage and electrocatalytic performances by synergizing CoMoO4@MoZn22 core-shell structures. Chem. Eng. J. 373, 485–492 (2019)

    CAS  Google Scholar 

  10. L.L. Zhang, R. Zhou, Graphene-based materials as supercapacitor electrodes. J. Mater Chem. 20, 5983–5992 (2010)

    CAS  Google Scholar 

  11. C. Soc, G. Wang, A review of electrode materials for electrochemical supercapacitors. J. Chem Soc Rev. 41, 797–828 (2012)

    Google Scholar 

  12. Y. Zhai, Y. Dou, R.T. Mayes, Carbon materials for chemical capacitive energy storage. Adv. Mater. 23, 4828–4850 (2011)

    CAS  Google Scholar 

  13. K. Zhang, L.L. Zhang, J. Wu, Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem. Mater. 22, 1392–1401 (2010)

    CAS  Google Scholar 

  14. P.C. Huai, C.R. Xiao, W. Ping, Flexible graphene–polyaniline composite paper for High performance supercapacitor. Energy Environ. Sci. 6, 1185 (2013)

    Google Scholar 

  15. S. Hussain, M.S. Javed, S. Asim, A. Shaheen, Y. Abbas, A. Iqbal, M. Wang, Novel gravel-like NiMoO4 nanoparticles on carbon cloth for outstanding supercapacitor applications. Ceram. Int. 46, 6406–6412 (2020)

    CAS  Google Scholar 

  16. C. Liu, X. Wu, B. Wang, Performance modulation of energy storage devices: a case of Ni-Co-S electrode materials. Chem. Eng. J. 392, 123651 (2020)

    CAS  Google Scholar 

  17. W. Fan, Z. Chao, W. Weng, Graphene-wrapped polyaniline hollow spheres as novel hybrid electrode materials for supercapacitor applications. ACS Appl. Mater. Interfaces. 58, 3382–3391 (2013)

    Google Scholar 

  18. Z. Chengzhou, Z. Junfeng, D. Shaojun, Graphene oxide/polypyrrole nanocomposites: one-step electrochemical doping, coating and synergistic effect for energy storage. J. Mater. Chem. 22, 6300–6306 (2012)

    Google Scholar 

  19. Z. Guoyin, H. Zhi, C. Jun, Highly conductive three-dimensional MnO2– carbon nanotube–graphene–Ni hybrid foam as a binder-free supercapacitor electrode. Nanoscale. 6, 1079–1085 (2014)

    Google Scholar 

  20. Z. Zheye, C. Kai, X. Fei, Advanced solid-state asymmetric supercapacitors based on 3D graphene/MnO2 and graphene/polypyrrole hybrid architectures. J. Mater. Chem. A. 3, 12828–12835 (2015)

    Google Scholar 

  21. Z. Zhang, X. Fei, Facile synthesis of 3D MnO2–graphene and carbon nanotube graphene composite networks for high- performance, flexible, all-solid-state asymmetric supercapacitors. Adv. Energy Mater. 1400064, 1–9 (2014)

    Google Scholar 

  22. J. Lee, H.M. Pathan, O. Joo, Electrochemical capacitance of nanocomposite films formed by loading carbon nanotubes with ruthenium oxide. J. Power. Sources. 159, 1527–1531 (2006)

    CAS  Google Scholar 

  23. S.G. Kandalkar, J.L. Gunjakar, Preparation of cobalt oxide thin films and its use insupercapacitor application. Appl. Surface Sci. 254, 5540–5544 (2008)

    CAS  Google Scholar 

  24. Y. Zheng, H. Ding, M. Zhang, Preparation and electrochemical properties of nickel oxide as a supercapacitor electrode material. Mater. Res. Bull. 44, 403–407 (2009)

    CAS  Google Scholar 

  25. G. Lota, E. Frackowiak, M. Monthioux, High performance supercapacitor from chromium oxide-nanotubes based electrodes. Chemical. Phy. Lett. 434, 73–77 (2007)

    CAS  Google Scholar 

  26. J. Chang, C. Huang, W.T. Tsai, M.J. Deng, I.W. Sun, Manganese films electrodeposited at different potentials and temperatures in ionic liquid and their application as electrode materials for supercapacitors. Electrochimic. Acta. 53, 4447–4453 (2008)

    CAS  Google Scholar 

  27. D. Zhoa, M. Dai, H. Liu, D. Xue, X. Wu, J. Liu, Sulfur-induced interface engineering of hybrid NiCo2O4@ NiMo2S4 structure for overall water splitting and flexible hybrid energy storage. Adv. Mater. Interfaces. 1901308 (2019).

  28. Y. Zhoa, J. He, M. Dai, D. Zhoa, X. Wu, B. Liu, Emerging CoMn-LDH@MnO2 electrode materials assembled using nanosheets for flexible and foldable energy storage devices. J. Energy. Chem. 45, 67–73 (2020)

    Google Scholar 

  29. D. Zhoa, H. Liu, X. Wu, Bi-interface induced multi-active MCo2O4@MCo2S4@PPy (M=Ni, Zn) sandwich structure for energy storage and electrocatalysis. Nano Energy. 57, 363 (2019)

    Google Scholar 

  30. W.F. Mak, G. Wee, V. Aravindan, High-energy density asymmetric supercapacitor based on electrospun vanadium pentoxide and polyaniline nanofibers in aqueous electrolyte. J. Electrochem. Soc. 159, 1481–1488 (2012)

    Google Scholar 

  31. Q. Qu, Y. Zhu, X. Gao, Core – Shell structure of polypyrrole grown on V2O5 nanoribbon as high performance anode material for supercapacitors. Adv. Energy. Mater. 2, 950–955 (2012)

    CAS  Google Scholar 

  32. V. Gupta, N. Miura, High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline. Mater. Lett. 60, 1466–1469 (2006)

    CAS  Google Scholar 

  33. B.M. Hughes, C. Annette, Electrochemical capacitance of nanocomposite films formed by coating aligned arrays of carbon nanotubes with polypyrrole. Adv Matt. 14, 382–385 (2002)

    CAS  Google Scholar 

  34. G. Wang, A. Vanchiappan, G. Nutan, LiCl/PVA gel electrolyte stabilizes vanadium oxide nanowire electrodes for pseudocapacitors. J. Electrochem. Soc. 159, 1481–1488 (2012)

    Google Scholar 

  35. S.Y. Lee, J. Kim, S. Park, Activated carbon nanotubes/polyaniline composites as supercapacitor electrodes. Energy. 78, 298–303 (2014)

    CAS  Google Scholar 

  36. W.-C. Chen, T.-C. Wen, H. Teng, Polyaniline-deposited porous carbon electrode for Supercapacitor. Electrochimic. Acta. 48, 641–649 (2003)

    CAS  Google Scholar 

  37. A. Janke, M. Stamm, M. Bo, Vertically oriented arrays of polyaniline nanorods and their super electrochemical properties. Chem. Commun. 38, 5749–5751 (2009)

    Google Scholar 

  38. A. Gonzalez, E. Goikolea, J. Andoni, Review on supercapacitors: technologies and materials. Renew. Sust. Energ. Rev. 58, 1189–1206 (2016)

    CAS  Google Scholar 

  39. Y. Huo, H. Zhang, J. Jiang, A three-dimensional nanostructured PANI/MnOx porous microsphere and its capacitive performance. J. Mater. Sci. 47, 7026–7034 (2012)

    CAS  Google Scholar 

  40. B. Ming, L. Tian, L. Feng, Electro-codeposition of vanadium oxide-polyaniline composite nanowire electrodes for high energy density supercapacitors. J. Mater. Chem. A. 2, 10882–10888 (2014)

    Google Scholar 

  41. S. Hussain, M.S. Javed, A. Shaheen, N. Aslam, Y. Abbas, I. Ashraf, M. Wang, Unique hierarchical mesoporous LaCrO3 perovskite oxides for highly efficient electrochemical energy storage applications. Ceram. Int. 45, 15164 (2019)

    CAS  Google Scholar 

  42. A. Mostafaei, A. Zolriasatein, Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods. Prog. Nat. Sci. Mater. Int. 22, 273–280 (2012)

    Google Scholar 

  43. S.B. Kondawar, S.P. Agrawal, Transport properties of conductive polyaniline nanocomposites based on carbon nanotubes. Inter. J. Compos. Mater. 2, 32–36 (2012)

    Google Scholar 

  44. L. Ding, Q. Li, D. Zhou, H. Cui, H. An, Modification of glassy carbon electrode with polyaniline/multi-walled carbon nanotubes composite: application to electro-reduction of bromate. J. Electroanal. Chem. 668, 44–50 (2012)

    CAS  Google Scholar 

  45. S.H. Patil, A.P. Gaikwad, S.D. Sathaye, To form layer by layer composite film in view of its application as supercapacitor electrode by exploiting the techniques of thin films formation just around the corner. Electrochimic. Acta. 265, 556–568 (2018)

    CAS  Google Scholar 

  46. K. Liang, X. Tang, W. Hu, Y. Yang, Ultrafine V2O5 nanowires in 3D current collector for high performance supercapacitor. ChemElectroChem. 3, 704–708 (2016)

    CAS  Google Scholar 

  47. V. Maurice, S. Zanna, L. Klein, XPS study of Li ion intercalation in V2O5 thin films prepared by thermal oxidation of vanadium metal. Electrochimic. Acta. 52, 5644–5653 (2007)

    Google Scholar 

  48. Y. Wang, G. Cao, Li + -intercalation electrochemical/electrochromic properties of vanadium pentoxide films by sol electrophoretic deposition. Electrochimic. Acta. 51, 4865–4872 (2006)

    CAS  Google Scholar 

  49. X. Liu, L. Bian, L. Zhang, Composite films of polyaniline and molybdenum oxide formed by electrocodeposition in aqueous media. J. solid state electrochem. 11, 1279–1286 (2007)

    CAS  Google Scholar 

  50. V.J. Vijakumar, M.K. Rohan, D.T. Nanasaheb, J.M. Yun, K.H. Kim, R.S. Mane, Annealing environment effects on the electrochemical behavior of supercapacitors using Ni foam current collectors. Mater. Res. Express. 5, 125004 (2018)

    Google Scholar 

  51. J. Kim, Synthesis and enhanced electrochemical supercapacitor properties of Ag-MnO2-polyaniline nanocomposite electrodes. Energy. 70, 473–477 (2014)

    CAS  Google Scholar 

  52. Y. Zhang, Synthesis of novel graphene oxide/pristine graphene/polyaniline ternary composites and application to supercapacitor. Chem. Eng. J. 288, 689–700 (2016)

    CAS  Google Scholar 

  53. W. Gongming, L. Xihong, Z. Teng, LiCl/PVA gel electrolyte stabilizes vanadium oxide nanowire electrodes for pseudocapacitors. ACS Nano 6, 10296–10302 (2012)

    Google Scholar 

  54. F. Gobal, M. Faraji, Electrodeposited polyaniline on Pd-loaded TiO2 nanotubes as active material for electrochemical supercapacitor. J. Electroanal. Chem. 691, 51–56 (2013)

    CAS  Google Scholar 

  55. R. Vacentini, L.M.D. Silva, E.P. Junior, W.G. Nunes, How to measure and calculate equivalent series resistance of electric double-layer capacitors. Molecules 24, 1452 (2019)

    Google Scholar 

  56. B. Diaz, L. Freire, M. Mujio, X.R. Novoa, Optimization of conversion coatings based on zinc phosphate on high strength steels, with enhanced barrier properties. J. Electroanal Chem. 737, 174–183 (2015)

    CAS  Google Scholar 

  57. A. Roy, A. Ray, P. Sadhukhan, S. Saha, S. Das, Morphological behaviour, electronic bond formation and electrochemical performance study of V2O5-polyaniline composite and its application in asymmetric supercapacitor. Mater. Res. Bull. 107, 379–390 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Higher Education Commission of Pakistan for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaqoob Khan or Zia ur Rehman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aamir, A., Ahmad, A., Shah, S.K. et al. Electro-codeposition of V2O5-polyaniline composite on Ni foam as an electrode for supercapacitor. J Mater Sci: Mater Electron 31, 21035–21045 (2020). https://doi.org/10.1007/s10854-020-04616-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04616-9

Navigation