Skip to main content
Log in

Traces of superconducting correlations in nanographite films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The review of structural, electronic and magnetic properties of nanographite films is presented. The superconducting correlations such as AC-to-DC conversion associated with the reversed Josephson Effect, pinning of vortices on columnar topological structure of film surface observed in atomic force and magnetic force microscope, non-zero current at zero voltage in scanning tunneling microscope in local area of nanographite film surface have been found. These results are broadly in line with other our observations on abrupt resistivity jump accompanied by light emission having potential applications as switchers and compact light emitter. Further experiments on studies of local conductivity related to ion irradiation hoping to find a zero resistance state are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W.A. Little, Possibility of synthesizing an organic superconductor. Phys. Review. 134, 6A-A1416 (1964)

    Google Scholar 

  2. V.L. Ginzburg, On surface superconductivity. Phys. Letters. 13(2), 101–102 (1964)

    CAS  Google Scholar 

  3. T.L. Makarova, Unconventional magnetism in carbon based materials //Frontiers in Magnetic Materials (– Springer, Berlin Heidelberg, 2005), – P. 209–246

    Google Scholar 

  4. A.M. Ziatdinov, Nanographites, their compounds, and film structures. Russian Chemical Bulletin. 64(1), 1–14 (2015)

    CAS  Google Scholar 

  5. G. Zhao, Is Room Temperature Superconductivity in Carbon Nanotubes Too Wonderful to Believe? //arXiv preprint cond-mat/0307770. – 2003

  6. G. Zhao, P. Beeli, Magnetic evidence for hot superconductivity in multi-walled carbon nanotubes //arXiv preprint cond-mat/0509037. – 2005

  7. S. Pathak, V.B. Shenoy, G. Baskaran, Possible high-temperature superconducting state with a d + id pairing symmetry in doped graphene. Physical Review B81(8), 085431 (2010)

    Google Scholar 

  8. G. Baskaran, Five-fold way to new high Tc superconductors //Current Trends in Science—Platinum Jubilee Special. – 2009

  9. A.M. Black-Schaffer, S. Doniach, Resonating valence bonds and mean-field d-wave superconductivity in graphite. Phys. Rev. B 75(13), 134512 (2007)

    Google Scholar 

  10. Y. Kopelevich, P. Esquinazi, J.H.S. Torres, S. Moehlecke, Ferromagnetic-and superconducting-like behavior of graphite. J. Low Temp. Phys. 119(5), 691–702 (2000)

    CAS  Google Scholar 

  11. Y. Kopelevich, V.V. Lemanov, S. Moehlecke, J.H. Torres, Landau level quantization and possible superconducting instabilities in highly oriented pyrolitic graphite. Phys. Solid State 41(12), 1959–1962 (1999)

    CAS  Google Scholar 

  12. T. Scheike, W. Böhlmann, P. Esquinazi, J. Barzola-Quiquia, A. Ballestar, A. Setzer, Can Doping Graphite Trigger Room Temperature Superconductivity? Evidence for Granular High‐Temperature Superconductivity in Water‐Treated Graphite Powder. Adv. Mater. 24(43), 5826–5831 (2012)

    CAS  Google Scholar 

  13. R.R. Da Silva, J.H.S. Torres, Y. Kopelevich, Indication of superconductivity at 35 K in graphite-sulfur composites. Phys. Rev. lett. 87(14), 147001 (2001)

    Google Scholar 

  14. T. Scheike, P. Esquinazi, A. Setzer, W. Böhlmann, Granular superconductivity at room temperature in bulk highly oriented pyrolytic graphite samples. Carbon 59, 140–149 (2013)

    CAS  Google Scholar 

  15. C.E. Precker, P.D. Esquinazi, A. Champi, J. Barzola-Quiquia, M. Zoraghi, S. Muiños-Landin, … T. Muenster, Identification of a possible superconducting transition above room temperature in natural graphite crystals. New J. Phys. 18(11), 113041 (2016)

    Google Scholar 

  16. A. Ballestar, J. Barzola-Quiquia, T. Scheike, P. Esquinazi, Josephson-coupled superconducting regions embedded at the interfaces of highly oriented pyrolytic graphite. New J. Phys. 15(15), 023024 (2013)

    Google Scholar 

  17. K. Antonowicz, Possible superconductivity at room temperature. Nature 247, 358–360 (1974)

    CAS  Google Scholar 

  18. S.G. Lebedev, S.V. Topalov, Observation of Weak Superconductivity in Carbon Films. Bulletin of the Lebedev Phys. Institute. 12, 14–20 (1994)

    Google Scholar 

  19. P. Esquinazi, N. García, J. Barzola-Quiquia, P. Rödiger, K. Schindler, J.L. Yao, M. Ziese, Indications for intrinsic superconductivity in highly oriented pyrolytic graphite. Phys. Rev. B 78(13), 134516 (2008)

    Google Scholar 

  20. N. García, P. Esquinazi, Mean field superconductivity approach in two dimensions. J. Superconductivity and Novel Magnetism 22(5), 439–444 (2009)

    Google Scholar 

  21. F. Arnold, J. Nyeki, John Saunders. “Superconducting sweet-spot in microcrystalline graphite revealed by point-contact spectroscopy.“ JETP Lett. 107.9 (2018): 577–578

    CAS  Google Scholar 

  22. A.N. Ionov, Josephson-Like Behaviour of the Current–Voltage Characteristics of Multi-graphene Flakes Embedded in Polystyrene. J. Low Temp. Phys. 185, 5–6 (2016) “.“ ( : 515–521.

    Google Scholar 

  23. A.N. Ionov, M.P. Volkov, M.N. Nikolaeva, High-temperature superconductivity of graphite particles incorporated in polystyrene. JETP Lett. 109(3), 163–165 (2019)

    CAS  Google Scholar 

  24. Y. Kawashima, “Possible room temperature superconductivity in conductors obtained by bringing alkanes into contact with a graphite surface.“. AIP Adv. 3(5), 052132 (2013)

    Google Scholar 

  25. M. Saad, I.F. Gilmutdinov, A.G. Kiiamov, D.A.B. Tayurskii, S.I. Nikitin, R.V.E. Yusupov, Observation of persistent currents in finely dispersed pyrolytic graphite. JETP Lett. 107(1), 37–41 (2018)

    CAS  Google Scholar 

  26. V.I. Tsebro, O.E. Omel’yanovskii, Persistent currents and magnetic flux trapping in a multiply connected carbon nanotube structure. Phys. Usp. 43(8), 847 (2000)

    CAS  Google Scholar 

  27. C. Xu, L. Balents, Topological superconductivity in twisted multilayer graphene. Phys. Rev. Lett. 121(8), 087001 (2018)

    CAS  Google Scholar 

  28. V.Z. Kresin, Y.N. Ovchinnikov, Shell structure and strengthening of superconducting pair correlation in nanoclusters. Phys. Rev. B. 74(2), 024514 (2006)

    Google Scholar 

  29. S.G. Lebedev, Field-effect switching in nano-graphite films. J. Phys. Chem. Solids. 75(9), 1029–1032 (2014)

    CAS  Google Scholar 

  30. R. Munger, H.J.T. Smith, High-temperature reverse ac Josephson Effect in YBa2Cu3O7. Phys. Rev. B. 44(1), 242 (1991)

    CAS  Google Scholar 

  31. J.T. Chen, L.E. Wenger, C.J. McEwan, E.M. Logothetis, Observation of the reverse ac Josephson effect in Y-Ba-Cu-O at 240 K. Phys. Rev. Lett. 58(19), 1972 (1987)

    CAS  Google Scholar 

  32. C.Z. Wang, K.M. Ho, and C.T.Chan, Phys. Rev. Lett. 70, 611–614 (1993)

    CAS  Google Scholar 

  33. P.K. Chu, L. Li, Mater. Chem. Phys. 96, 253 (2006)

    CAS  Google Scholar 

  34. S.G. Lebedev, V.E. Yants, A.S. Lebedev, Nucl. Instrum. Methods Phys. Res. A590, 227–233 (2008)

    Google Scholar 

  35. L.R. Zhao, B.Z.Jang, Journal of Material Sciences Letters 15, 99–101 (1996)

    CAS  Google Scholar 

  36. S.R.Ovshinsky,(1968) Physical Review Letters, 211450–1453

  37. S.S.K. Titus, R. Chatterjee, S. Asokan, A.Kumar, Phys. Rev. B48, 14650–14652 (1993)

    Google Scholar 

  38. N.F. Mott, Philosophical Magazine 24, 911 (1971)

    CAS  Google Scholar 

  39. M. Ovadia, B. Sacepe, D.Shahar, Phys. Rev. Lett. 102, 176802–176803 (2009)

    CAS  Google Scholar 

  40. B.Z. Jang, L.R. Zhao, Journal of Material Research 10, 2449–2453 (1995)

    CAS  Google Scholar 

  41. L. K.Antonowicz.J.Turlo Cacha, Carbon 11, 1–5 (1973)

    Google Scholar 

  42. A.Jesmansowicz K.Antonowicz, J.Wieczorek, Carbon 10, 81–84 (1972)

    Google Scholar 

  43. K. Antonowicz, Phys. Status. Solidi (a) 28, 497–502 (1975)

    CAS  Google Scholar 

  44. S.G. Lebedev, Nuclear Instruments and Methods in Physics Research A52122, 26 (2004)

    Google Scholar 

  45. S.G. Lebedev, International Review of Physics (IREPHY) 2, 312 (2008)

    Google Scholar 

  46. J.C. Gonzalez, M. Munoz, N. Garcıa, J. Barzola-Quiquia, D. Spoddig, K. Schindler, P. Esquinazi, Phys. Rev. Lett. 99, 216601 (2007)

    CAS  Google Scholar 

  47. G. Timp, P.D. Dresselhaus, T.C. Chieu, G. Dresselhaus, Y. Iye, Phys. Rev. B28, 7393 (1983)

    Google Scholar 

  48. Z.M. Wang, Q.Y. Xu, G.Ni, and Y.W. Du, Physics Letters A314, 328 (2003)

    Google Scholar 

  49. K. Kuriyama, M.S. Dresselhaus, Journal of Material Research 7, 940 (1992)

    CAS  Google Scholar 

  50. A.W.P. Fung, Z.H. Wang, M.S. Dresselhaus, G. Dresselhaus, R.W. Pekala, M. Endo, Phys. Rev. B49, 17325 (1994)

    Google Scholar 

  51. S.G.Lebedev,- Editor, “Unconventional Electromagnetics in Carbonaceous Materials” Nova Science Publishers, Inc., ISBN: 9781616681746, 2010

  52. G.M. Mikheev, V.M. Styapshin, P.A. Obraztsov, E.A. Khestanova, S.V. Garnov, Quantum Electron. 40(5), 425 (2010)

    CAS  Google Scholar 

  53. P.A. Obraztsov, G.M. Mikheev, S.V. Garnov, A.N. Obraztsov, Y.P.Svirko, Appl. Phys. Lett. 98, 091903 (2011)

    Google Scholar 

  54. V.L. Al’perovich, V.I. Belinicher, V.N. Novikov, A.S. Terekhov, Sov. Phys. JETP 6, 1201 (1981)

    Google Scholar 

  55. V.L. Gurevich, R. Laiho, Phys. Solid State 42, 1807 (2000)

    CAS  Google Scholar 

  56. H. Sadate-Akhavi, J.T. Chen, A.M. Kadin, J.E. Keem, and S.R.Ovshinsky, Solid State Commun. 50, 975–978 (1984)

    CAS  Google Scholar 

  57. J.T. Chen, R.J.Todd, and Y.W. Kim, Phys. Rev. B5, 1843–1849 (1972)

    Google Scholar 

  58. A. Dorokhov, A. Glauser, Y. Musienko, C. Regenfus, S. Reucroft, J. Swain, Recent progress on cooled avalanche photodiodes for single photon detection. J. Mod. Opt. 51(9–10), 1351–1357 (2004)

    CAS  Google Scholar 

  59. R.G. Mints, A.L. Rakhmanov, Rev. Mod. Phys. 53, 551 (1981)

    CAS  Google Scholar 

  60. N. Jalili, K. Laxminarayana, Mechatronics 14, 907 (2004)

    Google Scholar 

  61. M.R. Beasley, J.E. Mooij, T.P. Orlando, Possibility of vortex-antivortex pair dissociation in two-dimensional superconductors. Phys. Rev. Lett. 42(17), 1165 (1979)

    CAS  Google Scholar 

  62. M. Fogelström, D. Rainer, J.A. Sauls, Tunneling into current-carrying surface states of high-Tc superconductors. Phys. Rev. Lett. 79(2), 281 (1997)

    Google Scholar 

  63. S. Sasaki, M. Kriener, K. Segawa, K. Yada, Y. Tanaka, M. Sato, Y. Ando, Topological superconductivity in CuxBi2Se3. Physical review letters 107(21), 217001 (2011)

    Google Scholar 

  64. K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 54(24), 17954 (1996)

    CAS  Google Scholar 

  65. V.Z. Kresin, Y.N. Ovchinnikov (2020). Pair correlation in nano systems. Annals of Physics, 168141

  66. P.L. Walker (1981). Chemistry and Physics of Carbon Vol. 17. Marcel Dekker Incorporated

  67. M.S. Dresselhaus, G. Dresselhaus, Adv. Phys. 30, 139 (1981)

    CAS  Google Scholar 

  68. Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices. Nature 556(7699), 43–50 (2018)

    CAS  Google Scholar 

  69. T. Cao, F. Zhao, S.G. Louie, Topological Phases in Graphene Nanoribbons: Junction States, Spin Centers, and Quantum Spin Chains. Phys. Rev. Lett. 119, 076401 (2017)

    Google Scholar 

  70. K.N.Yugai,(2013) Topologicheskaya sverkhprovodimost nanostructur. Vestnik Omskogo Universiteta. 2 (68) (in Russian)

  71. D.E. Jiang, B.G. Sumpter, S. Dai, Unique chemical reactivity of a graphene nanoribbon’s zigzag edge. J. Chem. Phys. 126(13), 134701 (2007)

    Google Scholar 

  72. B. Uchoa, Y. Barlas, Superconducting states in pseudo-Landau-levels of strained graphene. Phys. Rev. Lett. 111(4), 046604 (2013)

    Google Scholar 

  73. V. Celebonovic, J. Pesic, R. Gajic, B. Vasic, A. Matkovic, Selected transport, vibrational, and mechanical properties of low-dimensional systems under strain. J. Appl. Phys. 125(15), 154301 (2019)

    Google Scholar 

  74. T.J. Peltonen, T.T. Heikkila, Flat-band superconductivity in periodically strained graphene: mean-field and Berezinskii–Kosterlitz–Thouless transition (Condensed Matter, Journal of Physics, 2020)

    Google Scholar 

  75. N. Levy, S.A. Burke, K.L. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A.H. Castro, Neto, M.F. Crommie, Science 329, 544 (2010)

    CAS  Google Scholar 

  76. F. Guinea, M.I. Katsnelson, A.G. Geim, Nat. Phys. 6, 30 (2010)

    CAS  Google Scholar 

  77. F. Guinea, A.G. Geim, M.I. Katsnelson, K.S. Novoselov, Phys. Rev. B 81, 035408 (2010)

    Google Scholar 

  78. L. Civale, A.D. Marwick, T.K. Worthington, M.A. Kirk, J.R. Thompson, L. Krusin-Elbaum, F. Holtzberg, Vortex confinement by columnar defects in YBa2Cu3O7 crystals Enhanced pinning at high fields and temperatures. Physical Review Letters 67(5), 648 (1991)

    CAS  Google Scholar 

  79. R. Córdoba, T.I. Baturina, J. Sesé, A.Y. Mironov, J.M. De Teresa, M.R. Ibarra, H. Suderow, Magnetic field-induced dissipation-free state in superconducting nanostructures. Nature communications 4(1), 1–7 (2013)

    Google Scholar 

Download references

Acknowledgements

I would like to thank Prof. P. Esquinazi from the Division of Superconductivity and Magnetism, Institute for Experimental Physics II of Leipzig University for technical support in AFM and MFM measurements and Dr. V.V. Kolesov from the Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences for the help in STM measurements. This work was supported by grants of RFBR No 05-08-17909-a, 06-02-27323-з, 06-08-99003-с and Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Lebedev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, S.G. Traces of superconducting correlations in nanographite films. J Mater Sci: Mater Electron 31, 20883–20898 (2020). https://doi.org/10.1007/s10854-020-04603-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04603-0

Navigation