Skip to main content
Log in

Facile synthesis of Se/BiVO4 heterojunction composite and evaluation of synergetic reaction mechanism for efficient photocatalytic staining of organic dye pollutants in wastewater under visible light

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The novel Se/BiVO4 heterojunction nanocomposites were successfully synthesized by facile hydrothermal method. The physical and chemical properties of photocatalyst samples were characterized by XRD, SEM, EDS, FTIR, XPS, BET, UV–Vis DRS, PL, EIS, and EPR techniques. The photocatalytic activity of Se/BiVO4 was measured for the degradation of pollutant, Crystal Violet (CV) organic dye. It was observed that Se/BiVO4 photocatalyst with mole ratio 2:1 exhibited superior degradation of 98.69% of CV dye within 50 min using visible light. The electron paramagnetic resonance spectra show that OH· radical being strong oxidizing agent is a major active agent species in the degradation of CV over Se/BiVO4@(2:1). The tremendous photo memory and stable nature of the Se/BiVO4 photocatalysts endorsed their usage as cost-effective photocatalysts for practical applications. Based on these results, the enhanced photocatalytic activities could be owed to the improved optical absorption and efficient separation and migration of photo-created charge carriers with the decreased recombination of electrons–holes resulting from composite effect. The possible photocatalytic mechanism of Se/BiVO4 was critically discussed based on the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Zhang et al., Photocatalytic removal of organics over BiVO4-based photocatalysts, in Semiconductor Photocatalysis-Materials, ed. by K. Zhang, et al. (Mechanisms and Applications. IntechOpen, London, 2016)

    Google Scholar 

  2. A.H. Abdullah, W.T. Peng, M. Hussein, Degradation of methylene blue dye by CuO-BiVO4 photocatalysts under visible light irradiation. Malays. J. Anal. Sci. 20(6), 1338–1345 (2016)

    Article  Google Scholar 

  3. Y. Gao et al., The construction of amorphous metal-organic cage-based solid for rapid dye adsorption and time-dependent dye separation from water. Chem. Eng. J. 357, 129–139 (2019)

    Article  CAS  Google Scholar 

  4. M. Pirhashemi, A. Habibi-Yangjeh, S.R. Pouran, Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts. J. Ind. Eng. Chem. 62, 1–25 (2018)

    Article  CAS  Google Scholar 

  5. M.M. Sajid et al., Morphological effects on the photocatalytic performance of FeVO4 nanocomposite. Nano-Struct. Nano-Objects 22, 100431 (2020)

    Article  CAS  Google Scholar 

  6. H. Zhai et al., Construction of 1D-MoS2 nanorods/LiNb3O8 heterostructure for enhanced hydrogen evolution. Appl. Mater. Today 18, 100536 (2020)

    Article  Google Scholar 

  7. P.K. Rai et al., Nanoparticle-plant interaction: implications in energy, environment, and agriculture. Environ. Int. 119, 1–19 (2018)

    Article  CAS  Google Scholar 

  8. L.G. Devi, R. Kavitha, A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity. Appl. Catal. B 140, 559–587 (2013)

    Article  CAS  Google Scholar 

  9. C. Singh, R. Chaudhary, R.S. Thakur, Performance of advanced photocatalytic detoxification of municipal wastewater under solar radiation—a mini review. Int. J. Energy Environ. 2(2), 337–350 (2011)

    CAS  Google Scholar 

  10. S.B. Khan et al., Morphological influence of TiO2 nanostructures (nanozigzag, nanohelics and nanorod) on photocatalytic degradation of organic dyes. Appl. Surf. Sci. 400, 184–193 (2017)

    Article  CAS  Google Scholar 

  11. J. Kou et al., Research on photocatalytic degradation properties of organics with different new photocatalysts. Curr. Org. Chem. 14(7), 728–744 (2010)

    Article  CAS  Google Scholar 

  12. H. Zhai, B.Y. Xia, H.S. Park, Ti-based electrode materials for electrochemical sodium ion storage and removal. J. Mater. Chem. A 7(39), 22163–22188 (2019)

    Article  CAS  Google Scholar 

  13. S. Ahmed et al., Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. J. Environ. Manag. 92(3), 311–330 (2011)

    Article  CAS  Google Scholar 

  14. M.M. Sajid et al., Study of the interfacial charge transfer in bismuth vanadate/reduce graphene oxide (BiVO 4/rGO) composite and evaluation of its photocatalytic activity. Res. Chem. Intermed. 46(2), 1201–1215 (2020)

    Article  CAS  Google Scholar 

  15. Y. Hu et al., BiVO4/TiO2 nanocrystalline heterostructure: a wide spectrum responsive photocatalyst towards the highly efficient decomposition of gaseous benzene. Appl. Catal. B 104(1–2), 30–36 (2011)

    Article  CAS  Google Scholar 

  16. Y. Ding, Designing materials for inorganic and living photocatalytic systems for air, water, and CO2 reduction from sunlight, 2018.

  17. N. Choi, Metal oxide thin film transistors on paper substrate: fabrication, characterization, and printing process, 2012.

  18. F.F. Abdi et al., Spray-deposited Co-Pi Catalyzed BiVO 4: a low-cost route towards highly efficient photoanodes. MRS Online Proceed. Library Arch. (2012). https://doi.org/10.1557/opl.2012.811

    Article  Google Scholar 

  19. T. Soltani, A. Tayyebi, B.-K. Lee, Efficient promotion of charge separation with reduced graphene oxide (rGO) in BiVO4/rGO photoanode for greatly enhanced photoelectrochemical water splitting. Sol. Energy Mater. Sol. Cells 185, 325–332 (2018)

    Article  CAS  Google Scholar 

  20. H. Chen et al., Hydrogen activation on aluminium-doped magnesium hydride surface for methanation of carbon dioxide. Appl. Surf. Sci. 515, 146038 (2020)

    Article  CAS  Google Scholar 

  21. Y. Liu et al., Enhanced photocatalytic activity over flower-like sphere Ag/Ag2CO3/BiVO4 plasmonic heterojunction photocatalyst for tetracycline degradation. Chem. Eng. J. 331, 242–254 (2018)

    Article  CAS  Google Scholar 

  22. M.M. Sajid et al., Hydrothermal fabrication of monoclinic bismuth vanadate (m-BiVO4) nanoparticles for photocatalytic degradation of toxic organic dyes. Mater. Sci. Eng. B 242, 83–89 (2019)

    Article  CAS  Google Scholar 

  23. S. Zhang et al., Decorating non-noble metal plasmonic Al on a TiO2/Cu2O photoanode to boost performance in photoelectrochemical water splitting. Chin. J. Catal. 41(12), 1884–1893 (2020)

    Article  CAS  Google Scholar 

  24. Y. Li et al., An effective strategy of constructing a multi-junction structure by integrating a heterojunction and a homojunction to promote the charge separation and transfer efficiency of WO3. J. Mater. Chem. A 8(13), 6256–6267 (2020)

    Article  CAS  Google Scholar 

  25. M.M. Sajid et al., Facile synthesis of Zinc vanadate Zn3 (VO4) 2 for highly efficient visible light assisted photocatalytic activity. J. Alloys Compd. 775, 281–289 (2019)

    Article  CAS  Google Scholar 

  26. M.M. Sajid et al., Generation of strong oxidizing radicals from plate-like morphology of BiVO4 for the fast degradation of crystal violet dye under visible light. Appl. Phys. A 126(4), 314 (2020)

    Article  CAS  Google Scholar 

  27. M.M. Sajid et al., Preparation and characterization of vanadium pentoxide (V2O5) for photocatalytic degradation of monoazo and diazo dyes. Surf. Interfaces (2020). https://doi.org/10.1016/j.surfin.2020.100502

    Article  Google Scholar 

  28. Y.-D. Chiou, Y.-J. Hsu, Room-temperature synthesis of single-crystalline Se nanorods with remarkable photocatalytic properties. Appl. Catal. B 105(1–2), 211–219 (2011)

    Article  CAS  Google Scholar 

  29. E. Piacenza et al., Selenium and tellurium nanomaterials. Phys. Sci. Rev. 3(5), 20170100 (2018)

    Google Scholar 

  30. J. Li et al., Investigations on structural, optical and X-radiation responsive properties of a-Se thin films fabricated by thermal evaporation method at low vacuum degree. Materials 11(3), 368 (2018)

    Article  CAS  Google Scholar 

  31. G. Murugesan et al., Methods involved in the synthesis of selenium nanoparticles and their different applications—a review. Eur. J. Biomed. 6(4), 189–194 (2019)

    CAS  Google Scholar 

  32. B. Kramer, K. Maschke, L. Laude, Electronic spectra of trigonal and disordered phases of tellurium and selenium. I. Theory. Phys. Rev. B 8(12), 5781 (1973)

    Article  CAS  Google Scholar 

  33. I. Rosenfeld, O.A. Beath, Selenium: Geobotany, Biochemistry, Toxicity, and Nutrition (Academic Press, London, 2013)

    Google Scholar 

  34. M.M. Sajid et al., Visible light assisted photocatalytic degradation of crystal violet dye and electrochemical detection of ascorbic acid using a BiVO4/FeVO4 heterojunction composite. RSC Adv. 8(42), 23489–23498 (2018)

    Article  CAS  Google Scholar 

  35. M.M. Sajid et al., Facile synthesis of Zn3(VO4)2/FeVO4 heterojunction and study on its photocatalytic and electrochemical properties. Appl. Nanosci. 10(2), 421–433 (2020)

    Article  CAS  Google Scholar 

  36. Y. Huang, M. Fu, T. He, Synthesis of g-C3N4/BiVO4 nanocomposite photocatalyst and its application in photocatalytic reduction of CO2. Acta Physico-Chim. Sin. 31(6), 1145–1152 (2015)

    Article  CAS  Google Scholar 

  37. W. Zhao et al., Carbon spheres supported visible-light-driven CuO-BiVO4 heterojunction: preparation, characterization, and photocatalytic properties. Appl. Catal. B 115, 90–99 (2012)

    Article  CAS  Google Scholar 

  38. N. Wetchakun et al., BiVO4/CeO2 nanocomposites with high visible-light-induced photocatalytic activity. ACS Appl. Mater. Interfaces. 4(7), 3718–3723 (2012)

    Article  CAS  Google Scholar 

  39. T. Soltani, A. Tayyebi, B.-K. Lee, Photolysis and photocatalysis of tetracycline by sonochemically heterojunctioned BiVO4/reduced graphene oxide under visible-light irradiation. J. Environ. Manag. 232, 713–721 (2019)

    Article  CAS  Google Scholar 

  40. S. Veeralingam, P. Yadav, S. Badhulika, Fe doped ZnO/BiVO4 heterostructure based large area, flexible, high performance broadband photodetector with ultrahigh quantum yield. Nanoscale 12(16), 9152–9161 (2020)

    Article  CAS  Google Scholar 

  41. Y. Guo et al., Facile synthesis of ZnO/BiVO4 photocatalyst with enhanced photocatalytic performance. Optoelectron. Adv. Mater. Rapid Commun. 14, 84–91 (2020)

    CAS  Google Scholar 

  42. W. Wu, Z.-H. Huang, T.-T. Lim, Recent development of mixed metal oxide anodes for electrochemical oxidation of organic pollutants in water. Appl. Catal. A 480, 58–78 (2014)

    Article  CAS  Google Scholar 

  43. Y. Fu, X. Sun, X. Wang, BiVO4–graphene catalyst and its high photocatalytic performance under visible light irradiation. Mater. Chem. Phys. 131(1–2), 325–330 (2011)

    Article  CAS  Google Scholar 

  44. N. Oladoja, C. Aboluwoye, Y. Oladimeji, Kinetics and isotherm studies on methylene blue adsorption onto ground palm kernel coat. Turk. J. Eng. Environ. Sci. 32(5), 303–312 (2009)

    Google Scholar 

  45. F. Akika et al., Structural and optical properties of Cu-substitution of NiAl2O4 and their photocatalytic activity towards Congo red under solar light irradiation. J. Photochem. Photobiol. A 364, 542–550 (2018)

    Article  CAS  Google Scholar 

  46. S.N.F.M. Nasir et al., New insights into Se/BiVO4 heterostructure for photoelectrochemical water splitting: a combined experimental and DFT study. J. Phys. Chem. C 121(11), 6218–6228 (2017)

    Article  CAS  Google Scholar 

  47. P. Madhusudan et al., Hydrothermal synthesis of meso/macroporous BiVO4 hierarchical particles and their photocatalytic degradation properties under visible light irradiation. Environ. Sci. Pollut. Res. 20(9), 6638–6645 (2013)

    Article  CAS  Google Scholar 

  48. S. Kumar, P. Sahare, Photocatalytic activity of bismuth vanadate for the degradation of organic compounds. NANO 8(01), 1350007 (2013)

    Article  CAS  Google Scholar 

  49. S. Irfan et al., Band-gap engineering and enhanced photocatalytic activity of Sm and Mn doped BiFeO3 nanoparticles. J. Am. Ceram. Soc. 100(1), 31–40 (2017)

    Article  CAS  Google Scholar 

  50. M.M. Sajid et al., Synthesis of Zn3(VO4)2/BiVO4 heterojunction composite for the photocatalytic degradation of methylene blue organic dye and electrochemical detection of H2O2. RSC Adv. 8(62), 35403–35412 (2018)

    Article  CAS  Google Scholar 

  51. M. Zalfani et al., BiVO4/3DOM TiO2 nanocomposites: effect of BiVO4 as highly efficient visible light sensitizer for highly improved visible light photocatalytic activity in the degradation of dye pollutants. Appl. Catal. B 205, 121–132 (2017)

    Article  CAS  Google Scholar 

  52. X. Li et al., Electrospun carbon-based nanostructured electrodes for advanced energy storage—a review. Energy Storage Mater. 5, 58–92 (2016)

    Article  CAS  Google Scholar 

  53. M. Humayun et al., Enhanced visible-light activities of porous BiFeO3 by coupling with nanocrystalline TiO2 and mechanism. Appl. Catal. B 180, 219–226 (2016)

    Article  CAS  Google Scholar 

  54. A. Kumar et al., Facile hetero-assembly of superparamagnetic Fe3O4/BiVO4 stacked on biochar for solar photo-degradation of methyl paraben and pesticide removal from soil. J. Photochem. Photobiol. A 337, 118–131 (2017)

    Article  CAS  Google Scholar 

  55. S. Fatima et al., The high photocatalytic activity and reduced bandgap energy of La and Mn co-doped BiFeO3/graphene nanoplatelet (GNP) nanohybrids. RSC Adv. 7(57), 35928–35937 (2017)

    Article  CAS  Google Scholar 

  56. G. Eda et al., Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 22(4), 505–509 (2010)

    Article  CAS  Google Scholar 

  57. L. Dou et al., Low-bandgap near-IR conjugated polymers/molecules for organic electronics. Chem. Rev. 115(23), 12633–12665 (2015)

    Article  CAS  Google Scholar 

  58. E. Shaaban et al., Structural, optical and electrical characteristics of sulfur incorporated ZnSe thin films. Optik 164, 527–537 (2018)

    Article  CAS  Google Scholar 

  59. S. Tang et al., Enhanced photocatalytic performance of BiVO4 for degradation of methylene blue under LED visible light irradiation assisted by peroxymonosulfate. Int. J. Electrochem. Sci. 15(3), 2470–2480 (2020)

    Article  CAS  Google Scholar 

  60. C.J. Viasus Pérez, Modeling Study on Reverse Combustion Promoted by m-BiVO4 (Université d'Ottawa/University of Ottawa, Ottawa, 2019)

    Google Scholar 

  61. S. Irfan et al., Enhanced photocatalytic activity of La3+ and Se4+ co-doped bismuth ferrite nanostructures. J. Mater. Chem. A 5(22), 11143–11151 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge Dr. Zhengjun Zhang for supporting characterization techniques and keen interest, Tsinghua University, Beijing, China

Funding

This work was financially supported by the State Scholarship Fund of China Scholarship Council (No. 201808410144), the National Natural Science Foundation of China (No. 51202107), and Foundation of Henan Educational Committee (No. 20A480003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Munir Sajid or Haifa Zhai.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajid, M.M., Khan, S.B., Javed, Y. et al. Facile synthesis of Se/BiVO4 heterojunction composite and evaluation of synergetic reaction mechanism for efficient photocatalytic staining of organic dye pollutants in wastewater under visible light. J Mater Sci: Mater Electron 31, 19599–19612 (2020). https://doi.org/10.1007/s10854-020-04487-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04487-0

Navigation