Skip to main content

Advertisement

Log in

Direct growth of NiCo2O4 nanosheet arrays on 3D-Ni-modified CFs for enhanced electrochemical storage in flexible supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The rapid development of wearable and portable smart equipment has led to a research boom in flexible energy storage devices. Herein, NiCo2O4 nanosheet arrays have been successfully grown on carbon fibers (CFs), which was firstly modified by the three-dimensional Ni (3D-Ni) to repair the cracks and grooves in the surface of CF. The obtained CFs@3D-Ni/NiCo2O4 electrode possesses a high specific capacity of 736 F/g at 1 A/g current density in the three-electrode system. More importantly, the composite showed excellent electrochemistry stability after temperature plummets. The all-solid-state asymmetric supercapacitor device (ASC) assembled by CFs@3D-Ni/NiCo2O4 delivers a wonderful specific capacity of 176 F/g, a high energy density 55 W h/Kg at 750 W/Kg, excellent cycling stability (about 97.84% after 2000 cycles), and high flexibility (almost no influence in electrical performance at various bending angles). This work has provided a promising method to prepare high performance of the flexible and lightweight energy storage equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Q. Wang, X. Wang, B. Liu, G. Yu, X. Hou, D. Chen, G. Shen, NiCo2O4 nanowire arrays supported on Ni foam for high-performance flexible all-solid-state supercapacitors. J. Mater. Chem. A. 1, 2468 (2012)

    Google Scholar 

  2. J. Zhang, Y. Li, Y. Zhang, X. Qian, R. Niu, R. Hu, X. Zhu, X. Wang, J. Zhu, The enhanced adhesion between overlong TiNxOy/MnO2 nanoarrays and Ti substrate: towards flexible supercapacitors with high energy density and long service life. Nano Energy 43, 91 (2018)

    CAS  Google Scholar 

  3. M. Huang, L. Wang, S. Chen, L. Kang, Z. Lei, F. Shi, H. Xu, Z. Liu, Highly flexible all-solid-state cable-type supercapacitors based on Cu/reduced graphene oxide/manganese dioxide fibers. RSC Adv. 7, 10092 (2017)

    CAS  Google Scholar 

  4. M. Serrapede, A. Rafique, M. Fontana, Z. Abderaouf, P. Rivolo, S. Bianco, C. Loubna, T.M. Elena, A. Lamberti, Fiber-shaped asymmetric supercapacitor exploiting rGO/Fe2O3 aerogel and electrodeposited MnOx nanosheets on carbon fibers. Carbon 144, 91 (2019)

    CAS  Google Scholar 

  5. L. Chen, Z. Wen, L. Chen, W. Wang, Q. Ai, G. Hou, Y. Li, J. Lou, L. Ci, Nitrogen and sulfur co-doped porous carbon fibers film for flexible symmetric all-solid-state supercapacitors. Carbon 158, 456 (2020)

    CAS  Google Scholar 

  6. A.S. Levitt, M. Alhabeb, C.B. Hatter, A. Sarycheva, G. Dion, Y. Gogotsi, Electrospun MXene/carbon nanofibers as supercapacitor electrodes. J. Mater. Chem. A. 7, 269 (2019)

    CAS  Google Scholar 

  7. Y. Han, Y. Lu, S. Shen, Y. Zhong, S. Liu, X. Xia, Y. Tong, X. Lu, Enhancing the capacitive storage performance of carbon fiber textile by surface and structural modulation for advanced flexible asymmetric supercapacitors. Adv. Funct. Mater. 29, 1806329 (2019)

    Google Scholar 

  8. P. Wu, S. Cheng, M. Yao, L. Yang, Y. Zhu, P. Liu, O. Xing, J. Zhou, M. Wang, H. Luo, M. Liu, A low-cost, self-standing NiCo2O4@CNT/CNT multilayer electrode for flexible asymmetric solid-state supercapacitors. Adv. Funct. Mater. 27, 1702160 (2017)

    Google Scholar 

  9. Y. Su, K. Xiao, N. Li, Z. Liu, S. Qiao, Amorphous Ni(OH)2@ three-dimensional Ni core–shell nanostructures for high capacitance pseudocapacitors and asymmetric supercapacitors. J. Mater. Chem. A. 34, 13845 (2014)

    Google Scholar 

  10. G. Chen, Y. Su, P. Kuang, Z. Liu, D. Chen, X. Wu, N. Li, S. Qiao, Polypyrrole shell@3D-Ni metal core structured electrodes for high-performance supercapacitors. Chem. Eur. J. 21, 4614 (2015)

    CAS  Google Scholar 

  11. G. Gao, H. Wu, S. Ding, L. Liu, X. Lou, Hierarchical NiCo2O4 nanosheets grown on Ni nanofoam as high-performance electrodes for supercapacitors. Small 11, 804 (2015)

    CAS  Google Scholar 

  12. Y. Zhang, J. Wang, L. Yu, L. Wang, P. Wan, H. Wei, L. Lin, S. Hussain, Ni@NiCo2O4 core/shells composite as electrode material for supercapacitor. Ceram. Int. 43, 2057 (2017)

    CAS  Google Scholar 

  13. N. Yu, H. Yin, W. Zhang, Y. Liu, Z. Tang, M. Zhu, High-performance fiber-shaped all-solid-state asymmetric supercapacitors based on ultrathin MnO2 nanosheet/carbon fiber cathodes for wearable electronics. Adv. Energy Mater. 6, 1501458 (2016)

    Google Scholar 

  14. X. Wang, B. Liu, R. Liu, Q. Wang, X. Hou, D. Chen, R. Wang, G. Shen, Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. Angew. Chem. Int. Ed. Engl. 53, 1849 (2014)

    CAS  Google Scholar 

  15. J. Qi, X. Liu, Y. Sui, Y. He, Y. Ren, Q. Meng, F. Wei, X. Zhang, High performance fiber-shaped all-solid-state symmetric supercapacitor based on mesoporous CuCo2S4 nanosheets. J. Mater. Sci. 30, 667 (2018)

    Google Scholar 

  16. I. Hussain, A. Ali, C. Lamiel, S.G. Mohamed, S. Sahoo, J.J. Shim, 3D walking palm-like core-shell CoMoO4@NiCo2S4@Nickel foam composite for high-performance supercapacitors. Dalton Trans. 48, 3853 (2019)

    CAS  Google Scholar 

  17. L. Chen, D. Li, L. Chen, P. Si, J. Feng, L. Zhang, Y. Li, J. Lou, L. Ci, Core-shell structured carbon nanofibers yarn@polypyrrole@graphene for high performance all-solid-state fiber supercapacitors. Carbon 138, 264 (2018)

    CAS  Google Scholar 

  18. Y. Li, G. Zhu, H. Huang, M. Xu, T. Lu, L. Pan, A N, S dual doping strategy via electrospinning to prepare hierarchically porous carbon polyhedra embedded carbon nanofibers for flexible supercapacitors. J. Mater. Chem. A. 7, 9040 (2019)

    CAS  Google Scholar 

  19. Y. Gong, R. Chen, H. Xu, C. Yu, X. Zhao, Y. Sun, Z. Hui, J. Zhou, J. An, Z. Du, G. Sun, W. Huang, Polarity-assisted formation of hollow-frame sheathed nitrogen-doped nanofibrous carbon for supercapacitors. Nanoscale 11, 2492 (2019)

    CAS  Google Scholar 

  20. C. Yuan, J. Li, L. Hou, X. Zhang, L. Shen, X. Lou, Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv. Funct. Mater. 22, 4592 (2012)

    CAS  Google Scholar 

  21. L. Qian, L. Gu, L. Yang, H. Yuan, D. Xiao, Direct growth of NiCo2O4 nanostructures on conductive substrates with enhanced electrocatalytic activity and stability for methanol oxidation. Nanoscale 5, 7388 (2013)

    CAS  Google Scholar 

  22. K. Xiao, J. Li, G. Chen, Z. Liu, N. Li, Y. Su, Amorphous MnO2 supported on 3D-Ni nanodendrites for large areal capacitance supercapacitors. Electr. Acta. 149, 341 (2014)

    CAS  Google Scholar 

  23. C. Lu, W. Liu, H. Pan, B.K. Tay, X. Wang, K. Liang, X. Wei, Mesoporous NiCo2O4 nano-needles supported by 3D interconnected carbon network on Ni foam for electrochemical energy storage. Appl. Surf. Sci. 439, 1019 (2018)

    CAS  Google Scholar 

  24. D. Zhao, F. Hu, A. Umar, X. Wu, NiCo2O4 nanowire based flexible electrode materials for asymmetric supercapacitors. New J. Chem. 42, 7399 (2018)

    CAS  Google Scholar 

  25. Y. Guan, J. Mu, H. Che, X. Zhang, Z. Zhang, Preparation of hierarchical porous carbon with high capacitance. World J. Eng. 15, 323 (2018)

    CAS  Google Scholar 

  26. C. Guan, X. Liu, W. Ren, X. Li, C. Cheng, J. Wang, Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis. Adv. Energy Mater. 7, 1602391 (2017)

    Google Scholar 

  27. W. Wang, Z. Li, A. Meng, Q. Li, Network-like holey NiCo2O4 nanosheet arrays on Ni foam synthesized by electrodeposition for high-performance supercapacitors. J. Solid State Electr. 23, 635 (2018)

    Google Scholar 

  28. A.K. Das, R.K. Layek, N.H. Kim, D. Jung, J.H. Lee, Reduced graphene oxide (RGO)-supported NiCo2O4 nanoparticles: an electrocatalyst for methanol oxidation. Nanoscale 6, 10657 (2014)

    CAS  Google Scholar 

  29. L. Ma, X. Shen, H. Zhou, Z. Ji, K. Chen, G. Zhu, High performance supercapacitor electrode materials based on porous NiCo2O4 hexagonal nanoplates/reduced graphene oxide composites. Chem. Eng. J. 262, 980 (2015)

    CAS  Google Scholar 

  30. R. Ding, L. Qi, M. Jia, H. Wang, Porous NiCo2O4 nanostructures as bi-functional electrocatalysts for CH3OH oxidation reaction and H2O2 reduction reaction. Electro. Acta. 113, 290 (2013)

    CAS  Google Scholar 

  31. T. Chen, Y. Fan, G. Wang, J. Zhang, H. Chuo, R. Yang, Rationally designed carbon fiber@NiCo2O4@Polypyrrole core–shell nanowire array for high-performance supercapacitor electrodes. NANO 11, 1650015 (2016)

    CAS  Google Scholar 

  32. Y. Tan, Y. Liu, Y. Zhang, C. Xu, L. Kong, L. Kang, F. Ran, Dulse-derived porous carbon–polyaniline nanocomposite electrode for high-performance supercapacitors. J. App. Polym. Sci. 135, 45776 (2017)

    Google Scholar 

  33. X. He, H. Ma, J. Wang, Y. Xie, N. Xiao, J. Qiu, Porous carbon nanosheets from coal tar for high-performance supercapacitors. J. Power Sources. 357, 41 (2017)

    CAS  Google Scholar 

  34. C. Masarapu, H. Zeng, K.H. Hung, B. Wei, Effect of temperature on the capacitance of carbon nanotube supercapacitors. ACS Nano 3, 2199 (2009)

    CAS  Google Scholar 

  35. W. Li, K. Xu, L. An, F. Jiang, X. Zhou, J. Yang, Z. Chen, R. Zou, J. Hu, Effect of temperature on the performance of ultrafine MnO2 nanobelt supercapacitors. J. Mater. Chem. A. 2, 1443 (2014)

    CAS  Google Scholar 

  36. J. Yan, E. Khoo, A. Sumboja, P.S. Lee, Facile coating of manganese oxide on Tin oxide nanowires with high performance capacitive behavior. ACS Nano 4, 4247 (2010)

    CAS  Google Scholar 

  37. H. Xia, G. Li, H. Cai, X. Li, P. Sun, P. Wang, J. Huang, L. Wang, D. Zhang, Y. Yang, J. Xiong, Interlaced NiMn-LDH nanosheet decorated NiCo2O4 nanowire arrays on carbon cloth as advanced electrodes for high-performance flexible solid-state hybrid supercapacitors. Dalton Trans. 48, 12168 (2019)

    CAS  Google Scholar 

  38. X. Wang, W. Liu, X. Lu, P.S. Lee, Dodecyl sulfate-induced fast faradic process in nickel cobalt oxide–reduced graphite oxide composite material and its application for asymmetric supercapacitor device. J. Mater. Chem. 22, 23114 (2012)

    CAS  Google Scholar 

  39. D. Sun, Y. Li, X. Cheng, H. Shi, S. Jaffer, K. Wang, X. Liu, J. Lu, Y. Zhang, Efficient utilization of oxygen-vacancies-enabled NiCo2O4 electrode for high-performance asymmetric supercapacitor. Electr. Acta. 279, 269 (2018)

    CAS  Google Scholar 

  40. K. Xu, J. Yang, J. Hu, Synthesis of hollow NiCo2O4 nanospheres with large specific surface area for asymmetric supercapacitors. J. Colloid Interf. Sci. 511, 456 (2018)

    CAS  Google Scholar 

  41. F. Cai, Y. Kang, H. Chen, M. Chen, Q. Li, Hierarchical CNT@NiCo2O4 core–shell hybrid nanostructure for high-performance supercapacitors. J. Mater. Chem. A. 2, 11509 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports from the Program for the Young Top Talents of Hebei Province, Scientific research projects funded by Hebei province talent project training funds (A201803003), the Natural Science Foundation of Hebei Province (Grant Nos. B2019402082 and B2017402110), and the Science and Technology Research and Development Projects of Handan City (19422111008-16).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zengcai Guo or Jingbo Mu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Feng, Z., Che, H. et al. Direct growth of NiCo2O4 nanosheet arrays on 3D-Ni-modified CFs for enhanced electrochemical storage in flexible supercapacitors. J Mater Sci: Mater Electron 31, 17879–17891 (2020). https://doi.org/10.1007/s10854-020-04341-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04341-3

Navigation