Skip to main content
Log in

Study of electrical properties of (Pr/Ca/Pb)MnO3 ceramic

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Characterization of the electrical properties of Pr0.65Ca0.25Pb0.1MnO3 ceramic, prepared by the solid-state method, is conducted using the impedance spectroscopy technique. Ac-conductivity measurements reveal the presence of two electrical behaviors. A semiconductor character obtained at low-temperature ranges of 80–160 K, and a metallic behavior found at high-temperature ranges of 180–400 K. The temperature dependence of the exponent s confirms the contribution of two conduction processes in the transport mechanism. In the range of T < 140 K, the non-overlapping small polaron tunneling (NSPT) is the predominant mechanism. However, for T > 140 K, the conduction process is governed by the correlated barrier hopping (CBH) model. Finally, beyond T = 250 K, the dc-conductivity is characterized by the appearance of a saturation region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Tomioka, T. Ito, A. Sawa, Electronic phase diagram of half-doped perovskite manganites on the plane of quenched disorder versus one-electron bandwidth. Phys. Rev. B 97, 014409 (2018)

    CAS  Google Scholar 

  2. S. Dey, C. Rao, Splitting of CO2 by manganite perovskites to generate CO by solar isothermal redox cycling. ACS Energy Lett. 1, 237 (2016)

    CAS  Google Scholar 

  3. A. Mleiki, S. Othmani, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, E.K. Hlil, Normal and inverse magnetocaloric effect and short-range ferromagnetic interaction in (Pr, Sm)0.5Sr0.5MnO3 phase separated manganite. J. Alloys Compd. 688, 1214 (2016)

    CAS  Google Scholar 

  4. C. Reitz, P.M. Leufke, R. Schneider, H. Hahn, T. Brezesinski, Large magnetoresistance and electrostatic control of magnetism in ordered mesoporous La1–xCaxMnO3 thin films. Chem. Mater. 26, 5745 (2014)

    CAS  Google Scholar 

  5. F. Borgatti, C. Park, A. Herpers, F. Offi, R. Egoavil, Y. Yamashita, A. Yang, M. Kobata, K. Kobayashi, J. Verbeeck, G. Panaccione, R. Dittmann, Chemical insight into electroforming of resistive switching manganite heterostructures. Nanoscale 5, 3954 (2013)

    CAS  Google Scholar 

  6. Q. Yang, J. Yao, K. Zhang, W. Wang, X. Zuo, H. Tang, M. Wu, G. Li, Perovskite-type La1−xCaxMnO3 manganese oxides as effective counter electrodes for dye-sensitized solar cells. J. Electroanal. Chem. 833, 1 (2019)

    CAS  Google Scholar 

  7. A. Mleiki, S. Othmani, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, E.K. Hlil, Effect of praseodymium doping on the structural, magnetic and magnetocaloric properties of Sm0.55-xPrxSr0.45MnO3 (0.1 < x < 0.4) manganites. J. Alloys Compd. 645, 559 (2015)

    CAS  Google Scholar 

  8. Y. Tokura, Colossal Magnetoresistive Oxides (Gordon and Breach Science, New York, 2000)

    Google Scholar 

  9. M. Pajot, V. Duffort, E. Capoen, A.S. Mamede, R.N. Vannier, Influence of the strontium content on the performance of La1-xSrxMnO3/Bi1.5Er0.5O3 composite electrodes for low temperature solid oxide fuel cells. J. Power Sources 450, 227649 (2020)

    CAS  Google Scholar 

  10. X. Lu, X. Yang, L. Jia, B. Chi, J. Pu, J. Li, First principles study on the oxygen reduction reaction of the La1-xSrxMnO3–δ coated Ba1–xSrxCo1–yFeyO3–δ cathode for solid oxide fuel cells. Int. J. Hydrogen Energy 44, 16359 (2019)

    CAS  Google Scholar 

  11. A. Mleiki, S. Othmani, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, E.K. Hlil, Enhanced relative cooling power in Ga-doped La0.7(Sr, Ca)0.3MnO3 with ferromagnetic-like canted state. RSC Adv. 6, 54299 (2016)

    CAS  Google Scholar 

  12. S. Tarhouni, A. Mleiki, I. Chaaba, H.B. Khelifa, W. Cheikhrouhou Koubaa, M. Koubaa, E.K. Hlil, Structural, magnetic and magnetocaloric properties of Ag-doped Pr0.5Sr0.5−xAgxMnO3 manganites (0.0 ≤ x ≤ 0.4). Ceram. Int. 43, 133 (2017)

    CAS  Google Scholar 

  13. A. Arabi, M. Fazli, M.H. Ehsani, Tuning the morphology and photocatalytic activity of La0.7Ca0.3MnO3 nanorods via different mineralizer-assisted hydrothermal syntheses. Mater. Res. Bull. 90, 205 (2017)

    CAS  Google Scholar 

  14. F. Rahmani Afje, M.H. Ehsani, Size-dependent photocatalytic activity of La0.8Sr0.2MnO3 nanoparticles prepared by hydrothermal synthesis. Mater. Res. Exp. 5, 045012 (2018)

    Google Scholar 

  15. H. Rahmouni, B. Cherif, R. Jemai, A. Dhahri, K. Khirouni, Europium substitution for lanthanium in LaBaMnO—the structural and electrical properties of La0.7−xEuxBa0.3MnO3 perovskite. J. Alloys Compd. 690, 890 (2017)

    CAS  Google Scholar 

  16. H. Rahmouni, B. Cherif, M. Baazaoui, K. Khirouni, Effects of iron concentrations on the electrical properties of La0.67Ba0.33Mn1-xFexO3. J. Alloys Compd. 575, 9 (2013)

    Google Scholar 

  17. A. Mleiki, A. Khlifi, H. Rahmouni, N. Guermazi, K. Khirouni, A. Cheikhrouhou, Magnetic and dielectric properties of Ba-lacunar La0.5Eu0.2Ba0.3MnO3 manganites synthesized using sol-gel method under different sintering temperatures. J. Magn. Magn. Mater. 502, 166571 (2020)

    CAS  Google Scholar 

  18. R. Hanen, A. Mleiki, H. Rahmouni, N. Guermazi, K. Khirouni, E.K. Hlil, A. Cheikhrouhou, Effect of the nature of the dopant element on the physical properties of X-PrCaMnO system (X = Cd, Sr, and Pb). J. Magn. Magn. Mater. 508, 166810 (2020)

    CAS  Google Scholar 

  19. B. Arun, V.R. Akshay, K.D. Chandrasekhar, G.R. Mutta, M. Vasundhara, Comparison of structural, magnetic and electrical transport behavior in bulk and nanocrystalline Nd-lacunar Nd0.67Sr0.33MnO3 manganites. J. Magn. Magn. Mater. 472, 74 (2019)

    CAS  Google Scholar 

  20. B. Christopher, A. Rao, B.S. Nagaraja, K.S. Prasad, G.S. Okram, G. Sanjeev, V.C. Petwal, V.P. Verma, J. Dwivedi, P. Poornesh, Correlation between structural and transport properties of electron beam irradiated PrMnO3 compounds. Solid State Commun. 270, 30 (2018)

    CAS  Google Scholar 

  21. J. Hemberger, M. Brando, R. Wehn, VYu Ivanov, A.A. Mukhin, A.M. Balbashov, A. Loidl, Magnetic properties and specific heat of RMnO3 (R=Pr, Nd). Phys. Rev. B 69, 64418 (2004)

    Google Scholar 

  22. K.B. Garg, M. Heinonen, P. Nordblad, S.D. Dalela, N. Panwar, V. Sen, S.K. Agarwal, N. Sharma, A comparative study of oxygen loss on in situ heating in PrMnO3 and BaMnO3. Int. J. Mod. Phys. B 25, 1235 (2011)

    CAS  Google Scholar 

  23. Y. Chukalkin, A. Teplykh, B. Goshchitskii, Antiferro-ferromagnetic transformation in LaMnO3 under neutron irradiation. Phys. Status Solidi B 242, R70 (2005)

    CAS  Google Scholar 

  24. Y. Tomioka, A. Asamitsu, Y. Moritomo, Y. Tokura, Magnetic-field-induced metal-insulator phenomena in with controlled charge-ordering instability. Phys. Rev. B 53, R1689 (1996)

    CAS  Google Scholar 

  25. T. Elovaara, H. Huhtinen, S. Majumdar, P. Paturi, Irreversible metamagnetic transition and magnetic memory in small-bandwidth manganite Pr1-xCaxMnO3 (x = 0.0–0.5). J. Phys.: Condens. Matter 24, 216002 (2012)

    CAS  Google Scholar 

  26. Y. Tokura, Critical features of colossal magnetoresistive manganites. Rep. Prog. Phys. 69, 797 (2006)

    CAS  Google Scholar 

  27. A.-M. Haghiri-Gosnet, J.-P. Renard, CMR manganites: physics, thin films and devices. J. Phys. D 36, R127 (2003)

    CAS  Google Scholar 

  28. V.S. Kolat, T. Izgi, A.O. Kaya, N. Bayri, H. Gencer, S. Atalay, Metamagnetic transition and magnetocaloric effect in charge-ordered Pr0.68Ca0.32-xSrxMnO3 (x = 0, 0.1, 0.18, 0.26 and 0.32) compounds. J. Magn. Magn. Mater. 322, 427 (2010)

    CAS  Google Scholar 

  29. L.A. Dubraja, D. Wang, T. Brezesinski, Synthesis, structural characterization and magnetic properties of ordered mesoporous Pr1–xCaxMnO3 thin films. Cryst. Eng. Commun 20, 245 (2018)

    Google Scholar 

  30. H. Rahmouni, B. Cherif, R. Jemai, A. Dhahri, K. Khirouni, Europium substitution for lanthanium in LaBaMnO—the structural and electrical properties of La0.7-xEuxBa0.3MnO3 perovskite. J. Alloys Compd. 690, 890 (2017)

    CAS  Google Scholar 

  31. A. Mleiki, R. Hanen, H. Rahmouni, N. Guermazi, K. Khirouni, E.K. Hlil, A. Cheikhrouhou, Study of magnetic and electrical properties of Pr0.65Ca0.25Ba0.1MnO3 manganite. RSC Adv. 8, 31755 (2018)

    CAS  Google Scholar 

  32. A. Khlifi, A. Mleiki, H. Rahmouni, N. Guermazi, K. Khirouni, A. Cheikhrouhou, Barium deficiency and sintering temperature effects on structural and transport properties of La0.5Eu0.2Ba0.3−xxMnO3 manganites. J. Mater. Sci: Mater. Electron. 30, 19513 (2019)

    CAS  Google Scholar 

  33. N. Kharrat, R. Lahouli, W. Cheikhrouhou-Koubaa, L. Sicard, K. Khirouni, M. Koubaa, A. Cheikhrouhou, Effect of nickel doping on the electrical conductance properties of La0.67Ba0.33Mn1-xNixO3 (x = 0 and 0.075) manganite. Solid State Commun. 297, 21 (2019)

    CAS  Google Scholar 

  34. C. Saravanan, R. Thiyagarajan, P.V. Kanjariya, P. Sivaprakash, J.A. Bhalodia, S. Arumugam, Electrical resistivity, magnetic and magneto-caloric studies on perovskite manganites Nd1−xCdxMnO3 (x = 0 and 0.1) polycrystals. J. Magn. Magn. Mater. 476, 35 (2019)

    CAS  Google Scholar 

  35. N. Choudhary, M.K. Verma, N.D. Sharma, S. Sharma, D. Singh, Correlation between magnetic and transport properties of rare earth doped perovskite manganites La0.6R0.1Ca0.3MnO3 (R = La, Nd, Sm, Gd, and Dy) synthesized by Pechini process. Mater. Chem. Phys. 242, 122482 (2020)

    CAS  Google Scholar 

  36. M.K. Verma, N.D. Sharma, S. Sharma, N. Choudhary, D. Singh, Structural and magneto-transport properties of Li-substituted La0.65Ca0.35-xLixMnO3 (0 ≤ x ≤ 0.15) CMR manganites. J. Alloys Compd. 814, 152279 (2020)

    CAS  Google Scholar 

  37. X. Pu, H. Li, G. Dong, K. Chu, S. Zhang, Y. Liu, X. Liu, Electrical transport properties of (Pr1-xLax)0.7Sr0.3MnO3 (0 ≤ x ≤ 0.3) polycrystalline ceramics prepared by sol-gel process for potential room temperature bolometer use. Ceram. Int. 46, 4984 (2020)

    CAS  Google Scholar 

  38. N. Chau, H.N. Nhat, N.H. Luong, D.L. Minh, N.D. Tho, N.N. Chau, Structure, magnetic, magnetocaloric and magnetoresistance properties of La1-xPbxMnO3 perovskite. Phys. B 327, 270 (2003)

    CAS  Google Scholar 

  39. A. Staneva, Y. Dimitriev, Y. Ivanova, E. Kashchieva, J.M. Viera, M. Kolev, Phase formation and microstructure of the La0.6Pb0.4MnO3 obtained by low temperature methods. J. Univ. Chem. Technol. Metall. 42, 55 (2007)

    CAS  Google Scholar 

  40. P. Phong, N. Khien, N. Dang, D. Manh, L. Hong, I.-J. Lee, Effect of pb substitution on structural and electrical transport of La0.7Ca0.3−xPbxMnO3 (0 ≤ x ≤ 0.3) manganites. Phys. B 466, 44 (2015)

    Google Scholar 

  41. P.T. Phong, N.V. Khien, N.V. Dang, D.H. Manh, L.V. Hong, I.-J. Lee, Effect of Pb substitution on structural and electrical transport of La0.7Ca0.3-xPbxMnO3 (0 ≤ x ≤ 0.3) manganites. Phys. B 466, 44 (2012)

    Google Scholar 

  42. D.C. Krishna, P. Venugopal Reddy, Magnetic transport behavior of nano-crystalline Pr0.67A0.33MnO3 (A = Ca, Sr, Pb and Ba) manganites. J. Alloys Compd. 479, 661 (2009)

    CAS  Google Scholar 

  43. P. Bruce, High and low frequency Jonscher behavior of an ionically conducting glass. Solid State Ion. 15, 247 (1985)

    CAS  Google Scholar 

  44. S.R. Elliott, F.E.G. Henn, Application of the Anderson-Stuart model to the AC conduction of ionically conducting materials. J. Non-Cryst. Solids 116, 179 (1990)

    CAS  Google Scholar 

  45. A.K. Jonscher, M.S. Frost, Weakly frequency-dependent electrical conductivity in a Chalcogenide glass. Thin Solid Films 37, 267 (1976)

    CAS  Google Scholar 

  46. K. Lee, S. Cho, S.H. Park, Z.J. Heeger, C.-W. Lee, S.-H. Lee, Metallic transport in polyaniline. Nature 441, 65 (2006)

    CAS  Google Scholar 

  47. W. Hzez, R. Hamdi, S. Kraiem, H. Rahmouni, A. Tozri, K. Khirouni, E. Dhahri, Close look on the impact of treating dysprosium manganite with Ca/Sr in terms of transport properties. J. Alloys Compd. 834, 155121 (2020)

    CAS  Google Scholar 

  48. S. Rabha, P. Dobbidi, The impact of thickness on the optical, electrical and dielectric properties of nanocrystalline 0.9 MTO-0.1BNO composite thin films. Appl. Surf. Sci. 489, 831 (2019)

    CAS  Google Scholar 

  49. A. Ghosh, Frequency-dependent conductivity in bismuth-vanadate glassy semiconductors. Phys. Rev. B 41, 1479 (1990)

    CAS  Google Scholar 

  50. A. Ghosh, Transport properties of vanadium germanate glassy semiconductors. Phys. Rev. B 42, 5665 (1990)

    CAS  Google Scholar 

  51. S. Mollah, K.K. Som, K. Bose, B.K. Chaudhuri, ac conductivity in Bi4Sr3Ca3CuyOx (y = 0–5) and Bi4Sr3Ca3−zLizCu4Ox (z = 0.1–1.0) semiconducting oxide glasses. J. Appl. Phys. 74, 931 (1993)

    CAS  Google Scholar 

  52. Y. Ben Taher, A. Oueslati, N.K. Maaloul, K. Khirouni, M. Gargouri, Conductivity study and correlated barrier hopping (CBH) conduction mechanism in diphosphate compound. Appl. Phys. A 120, 1537 (2015)

    CAS  Google Scholar 

  53. V. Chithambaram, S. Jerome Das, S. Krishnan, Synthesis, optical and dielectric studies on novel semi organic nonlinear optical crystal by solution growth technique. J. Alloys Compd. 509, 4543 (2011)

    CAS  Google Scholar 

  54. F. Gaâbel, M. Khlifi, N. Hamdaoui, K. Taibi, J. Dhahri, Conduction mechanisms study in CaCu2.8Ni0.2Ti4O12 ceramics sintered at different temperatures. J. Alloys Compd. 828, 154373 (2020)

    Google Scholar 

  55. S.R. Elliott, A.c. conduction in amorphous chalcogenide and pnictide semi-conductors. Adv. Phys. 36, 135 (1987)

    CAS  Google Scholar 

  56. B.P. Jacob, S. Thankachan, S. Xavier, E.M. Mohammed, Dielectric behavior and AC conductivity of Tb3+ doped Ni0.4Zn0.6Fe2O4 nanoparticles. J. Alloys Compd. 541, 29 (2012)

    CAS  Google Scholar 

  57. N.F. Mott, E.A. Davis, Electronic Process in Non-Crystalline Materials (Clarendon Press, Oxford, 1979)

    Google Scholar 

  58. M. Okutan, E. Basaran, H.I. Bakan, F. Yakuphanoglu, AC conductivity and dielectric properties of Co-doped TiO2. Phys. B 364, 300 (2005)

    CAS  Google Scholar 

  59. S. Mahaboob, G. Prasad, G.S. Kumar, Electrical conduction in (Na0.125Bi0.125 Ba0.65Ca0.1)(Nd0.065Ti0.87Nb0.065)O3 ceramic. Bull. Mater. Sci. 29, 35 (2006)

    Google Scholar 

  60. ShA Mansour, I.S. Yahia, F. Yakuphanoglu, The electrical conductivity and dielectric properties of C.I. Basic Violet 10. Dyes Pigm. 87, 144 (2010)

    CAS  Google Scholar 

  61. T. Rhimi, M. Toumi, K. Khirouni, S. Guermazi, AC conductivity, electric modulus analysis of KLi(H2PO4)2 compound. J. Alloys Compd. 714, 546 (2017)

    CAS  Google Scholar 

  62. J. Suchanicz, The low-frequency dielectric relaxation Na0.5Bi0.5TiO3 ceramics. Mater. Sci. Eng. B 55, 114 (1998)

    Google Scholar 

  63. A.R. James, K. Srinivas, Low temperature fabrication and impedance spectroscopy of PMN-PT ceramics. Mater. Res. Bull. 34, 1301 (1999)

    CAS  Google Scholar 

  64. R. Jemaï, R. Lahouli, S. Hcini, H. Rahmouni, K. Khirouni, Investigation of nickel effects on some physical properties of magnesium based ferrite. J. Alloys Compd. 705, 340 (2017)

    Google Scholar 

  65. W. Ncib, A. Ben Jazia Kharrat, M. Saadi, K. Khirouni, N. Chniba-Boudjada, W. Boujelben, Structural, AC conductivity, conduction mechanism and dielectric properties of La0.62Eu0.05Ba0.33Mn0.85Fe0.15O3 ceramic compound. J. Mater. Sci: Mater. Electron. 30, 18391 (2019)

    CAS  Google Scholar 

  66. J.E. Bauerle, Study of solid electrolyte polarization by a complex admittance method. J. Phys. Chem. Solids 30, 2657 (1969)

    CAS  Google Scholar 

  67. A.K. Jonscher, The interpretation of non-ideal dielectric admittance and impedance diagrams. Phys. Status Solidi A 32, 665 (1975)

    CAS  Google Scholar 

  68. A.A. Bahgat, Y.M. Abou-Zeid, Mixed alkali effect in the K2O–Na2O–TeO2 glass system. Phys. Chem. Glasses 42, 01 (2001)

    Google Scholar 

  69. R. M’nassri, M. Khelifi, H. Rahmouni, A. Selmi, K. Khirouni, N. Chniba-Boudjada, A. Cheikhrouhou, Study of physical properties of cobalt substituted Pr0.7Ca0.3MnO3 ceramics. Ceram. Int. 42, 6145 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mleiki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanen, R., Mleiki, A., Rahmouni, H. et al. Study of electrical properties of (Pr/Ca/Pb)MnO3 ceramic. J Mater Sci: Mater Electron 31, 16830–16837 (2020). https://doi.org/10.1007/s10854-020-04237-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04237-2

Navigation