Skip to main content
Log in

Dielectric and microwave absorption properties of resin-matrix composite coating filled with multi-wall carbon nanotubes and Ti3SiC2 particles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lightweight resin-matrix composite coatings filled with multi-wall carbon nanotubes (MWCNTs) or/and Ti3SiC2 particles were fabricated, and the microstructure and complex permittivity of the coatings were detected. Owing to the synergistic effect of MWCNTs and Ti3SiC2 absorbents, the complex permittivity is effectively adjusted and the impedance matching is further optimized, ensuring the introduction of the incident electromagnetic waves. Meanwhile, the dipole movement, charge accumulation, micro-current and multiple scattering result in a much stronger dielectric loss and conductance loss to consume the incident electromagnetic waves. As a consequence, compared with MWCNTs/resin and Ti3SiC2/resin coatings, the MWCNTs-Ti3SiC2/resin coating exhibits favorable microwave absorption performance with a wider effective absorption bandwidth and much lower minimum reflection loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, H.S. Man, C.M. Koo, Y. Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science. 353, 1137–1140 (2016)

    Article  CAS  Google Scholar 

  2. Y. Zhang, Y. Huang, T.F. Zhang, H.C. Chang, P.S. Xiao, H.H. Chen, Z.Y. Huang, Y.S. Chen, Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27, 2049–2053 (2015)

    Article  CAS  Google Scholar 

  3. D.H. Ding, J. Wang, G.Q. Xiao, Z.P. Li, B. Bai, J.C. Ren, G.P. He, Enhanced electromagnetic wave absorbing properties of Si-O-C ceramics with in situ formed 1D nanostructures. Int. J. Appl. Ceram. Technol. 17, 734–744 (2020)

    Article  CAS  Google Scholar 

  4. G.S. Kumar, T.U. Patro, Efficient electromagnetic interference shielding and radar absorbing properties of ultrathin and flexible polymer-carbon nanotube composite films. Mater. Res. Express 5, 115304 (2018)

    Article  Google Scholar 

  5. M. Imai, K. Akiyama, T. Tanaka, E. Sano, Highly strong and conductive carbon nanotube/cellulose composite paper. Compos. Sci. Tech. 70, 1564–1570 (2010)

    Article  CAS  Google Scholar 

  6. F.B. Meng, H.G. Wang, F. Huang, Y.F. Guo, Z.Y. Wang, D. Hui, Z.W. Zhou, Graphene-based microwave absorbing composites: A review and prospective. Composites Part B 137, 260–277 (2018)

    Article  CAS  Google Scholar 

  7. L. Zhou, J.L. Huang, H.B. Wang, M. Chen, Y.L. Dong, F.K. Zheng, FeSiAl/ZnO-filled resin composite coatings with enhanced dielectric and microwave absorption properties. J. Mater. Sci. Mater. Electron. 30, 1896–1906 (2019)

    Article  CAS  Google Scholar 

  8. F. Qin, C. Brosseau, A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J. Appl. Phys. 111, 061301 (2012)

    Article  Google Scholar 

  9. Y.X. Zuo, Z.J. Yao, H.Y. Lin, J.T. Zhou, J. Lu, J. Ding, Digital light processing 3D printing of graphene/carbonyl iron/polymethyl methacrylate nanocomposites for efficient microwave absorption. Composites Part B 179, 107533 (2019)

    Article  CAS  Google Scholar 

  10. T.H. Wang, Y.F. Li, S. Geng, C. Zhou, X.L. Jia, F. Yang, L.Q. Zhang, X. Ren, H.T. Yang, Preparation of flexible reduced graphene oxide/poly (vinyl alcohol) film with superior microwave absorption properties. RSC Adv. 5, 88958–88964 (2012)

    Article  Google Scholar 

  11. H.H. Zhou, G.Y. Han, Y.M. Xiao, Y.Z. Chang, H.J. Zhai, A comparative study on long and short carbon nanotubes-incorporated polypyrrole/poly(sodium 4-styrenesulfonate) nanocomposites as high-performance supercapacitor electrodes. Synth. Met. 209, 405–411 (2015)

    Article  CAS  Google Scholar 

  12. S. Acharya, P. Alegaonkar, S. Datar, Effect of formation of heterostructure of SrAl4Fe8O19/RGO/PVDF on the microwave absorption properties of the composite. Chem. Eng. J. 374, 144–154 (2019)

    Article  CAS  Google Scholar 

  13. H. Mei, X. Zhao, X.C. Gui, D.W. Lu, D.Y. Han, S.S. Xiao, L.F. Cheng, SiC encapsulated Fe@CNT ultra-high absorptive shielding material for high temperature resistant EMI shielding. Ceram. Int. 45, 17144–17151 (2019)

    Article  CAS  Google Scholar 

  14. W.L. Song, M.S. Cao, L.Z. Fan, M.M. Lu, Y. Li, C.Y. Wang, H.F. Ju, Highly ordered porous carbon/wax composites for effective electromagnetic attenuation and shielding. Carbon 77, 130–142 (2014)

    Article  CAS  Google Scholar 

  15. M.D. Chen, H.Z. Yu, X.H. Jie, Y.G. Lu, Optimization on microwave absorbing properties of carbon nanotubes and magnetic oxide composite materials. Appl. Surf. Sci. 434, 1321–1326 (2018)

    Article  Google Scholar 

  16. E.Z. Zhou, J.B. Xi, Y. Guo, Y.J. Liu, Z. Xu, L. Peng, W.W. Gao, J. Ying, Z.C. Chen, C. Gao, Synergistic effect of graphene and carbon nanotube for high-performance electromagnetic interference shielding films. Carbon 133, 316–322 (2018)

    Article  CAS  Google Scholar 

  17. C.P. Mu, J.F. Song, B.C. Wang, C. Zhang, J.Y. Xiang, F.S. Wen, Z.Y. Liu, Two-dimensional materials and one-dimensional carbon nanotube composites for microwave absorption. Nanotechnology 29, 025704 (2018)

    Article  Google Scholar 

  18. Z.C. Mo, R.L. Yang, D.W. Lu, L.L. Yang, Q.M. Hu, H.B. Li, H. Zhu, Z.K. Tang, X.C. Gui, Lightweight, three-dimensional carbon Nanotube@TiO2 sponge with enhanced microwave absorption performance. Carbon 144, 433–439 (2019)

    Article  CAS  Google Scholar 

  19. L. Kong, X.W. Yin, H.L. Xu, X.Y. Yuan, T. Wang, Z.W. Xu, J.F. Huang, R. Yang, H. Fan, Powerful absorbing and lightweight electromagnetic shielding CNTs/RGO composite. Carbon 145, 61–66 (2019)

    Article  CAS  Google Scholar 

  20. Y. Liu, X.W. Yin, L. Kong, X.M. Liu, F. Ye, L.T. Zhang, L.F. Cheng, Electromagnetic properties of SiO2 reinforced with both multi-wall carbon nanotubes and ZnO particles. Carbon 64, 537–556 (2013)

    Article  Google Scholar 

  21. Q.M. Hu, R.L. Yang, Z.C. Mo, D.W. Lu, L.L. Yang, Z.F. He, H. Zhu, Z.K. Tang, X.C. Gui, Nitrogen-doped and Fe-filled CNTs/NiCo2O4 porous sponge with tunable microwave absorption performance. Carbon 153, 737–744 (2019)

    Article  CAS  Google Scholar 

  22. Y. Mu, W.C. Zhou, F. Wan, D.H. Ding, Y. Hu, F. Luo, High-temperature dielectric and electromagnetic interference shielding properties of SiCf/SiC composites using Ti3SiC2 as inert filler. Composites Part A 77, 195–203 (2015)

    Article  CAS  Google Scholar 

  23. J.B. Su, W.C. Zhou, Y. Liu, Y.C. Qing, F. Luo, D.M. Zhu, Effect of Ti3SiC2 addition on microwave absorption property of Ti3SiC2/cordierite coatings. Surf. Coat. Technol. 270, 39–46 (2015)

    Article  CAS  Google Scholar 

  24. Y. Liu, F. Luo, J.B. Su, W.C. Zhou, D.M. Zhu, Mechanical, dielectric, and microwave-absorption properties of alumina ceramic containing dispersed Ti3SiC2. J. Electron. Mater. 44, 867–873 (2015)

    Article  CAS  Google Scholar 

  25. Y. Liu, X.Y. Jian, X.L. Su, F. Luo, J. Xu, J.B. Wang, X.H. He, Y.H. Qu, Electromagnetic interference shielding and absorption properties of Ti3SiC2/nano Cu/epoxy resin coating. J. Alloys Compd. 740, 68–76 (2018)

    Article  CAS  Google Scholar 

  26. Y. Liu, X.L. Su, F. Luo, J. Xu, J.B. Wang, X.H. He, Y.H. Qu, Enhanced electromagnetic and microwave absorption properties of carbonyl iron/Ti3SiC2/epoxy resin coating. J. Mater. Sci. Mater. Electron. 29, 2500–2508 (2018)

    Article  CAS  Google Scholar 

  27. N. He, Z.D. He, L. Liu, Y. Lu, F.Q. Wang, W.H. Wu, G.X. Tong, Ni2+ guided phase/structure evolution and ultra-wide bandwidth microwave absorption of CoxNi1–x alloy hollow microspheres. Chem. Eng. J. 381, 122743 (2020)

    Article  CAS  Google Scholar 

  28. Z.G. Gao, B.H. Xu, M.L. Ma, A.L. Feng, Y. Zhang, X.H. Liu, Z.R. Jia, G.L. Wu, Electrostatic self-assembly synthesis of ZnFe2O4 quantum dots (ZnFe2O4@C) and electromagnetic microwave absorption. Composites Part B 179, 107417 (2019)

    Article  CAS  Google Scholar 

  29. L. Zhou, J.L. Huang, X.G. Wang, G.X. Su, J.Y. Qiu, Y.L. Dong, Mechanical, dielectric and microwave absorption properties of FeSiAl/Al2O3 composites fabricated by hot-pressed sintering. J. Alloys Compd. 774, 813–819 (2019)

    Article  CAS  Google Scholar 

  30. D.H. Ding, J. Wang, X.M. Yu, G.Q. Xiao, C. Feng, W.T. Xu, B. Bai, N. Yang, Y.Q. Gao, X. Hou, G.P. He, Dispersing of functionalized CNTs in Si-O-C ceramics and electromagnetic wave absorbing and mechanical properties of CNTs/Si-O-C nanocomposites. Ceram. Int. 46, 5407–5419 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51302018), the Fundamental Research Funds for the Central Universities from Chang’an University (Nos. 300102319309, 300102219509, 300102319501 and 300102310103), the foundation of State Key Laboratory for Mechanical Behavior of Materials in XJTU (No. 20202204), Key Research and Development Program in Shaanxi Province of China (No. 2019GY-174), and the Chang’an Scholar Program of Chang’an University (No. 201807CQ014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Yu, J., Wang, H. et al. Dielectric and microwave absorption properties of resin-matrix composite coating filled with multi-wall carbon nanotubes and Ti3SiC2 particles. J Mater Sci: Mater Electron 31, 15852–15858 (2020). https://doi.org/10.1007/s10854-020-04147-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04147-3

Navigation