Skip to main content
Log in

Vertically aligned ZnO/In2S3 core/shell heterostructures with enhanced photoelectrochemical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnO/In2S3 core/shell heterostructures were successfully synthesized through a successive ion layer absorption and reaction (SILAR) method. The thickness of In2S3 shells were adjusted from 6.8 to 36.1 nm by adopting different SILAR cycles. Compared with pure ZnO NRs, the ZnO/In2S3 core/shell NRs presented better light absorption, higher photocurrent density and enhanced incident photon-to-current conversion efficiency (IPCE). Both the highest photocurrent density and IPCE of obtained ZnO/In2S3 core/shell heterostructures were almost three times higher than that of pristine ZnO NRs. The PL spectra, i–t curves, EIS plots, Mott–Schottky plots and ECSA curves were also recorded to investigate the influence of the In2S3 deposition on the photoelectrochemical (PEC) performance of ZnO NRs. The In2S3 nanoparticles deposited on the surface of ZnO NRs enhanced the light absorption of the heterostructures and facilitated the separation of photogenerated electron–hole pairs, eventually resulting in the enhanced PEC performance. The preparation of ZnO/In2S3 core/shell heterostructures by the simple SILAR method would increase the possibility for its practical application of photoelectrodes in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2

Similar content being viewed by others

References

  1. A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, E. Thimsen, Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 10, 456 (2011)

    CAS  Google Scholar 

  2. K. Sivula, F. Le Formal, M. Grätzel, Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. Chemsuschem 4, 432–449 (2011)

    CAS  Google Scholar 

  3. L.J. Minggu, W.R. WanDaud, M.B. Kassim, An overview of photocells and photoreactors for photoelectrochemical water splitting. Int. J. Hydrogen Energy 35, 5233–5244 (2010)

    CAS  Google Scholar 

  4. J. Su, L. Guo, N. Bao, C.A. Grimes, Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett. 11, 1928–1933 (2011)

    CAS  Google Scholar 

  5. Z. Zhang, L. Zhang, M.N. Hedhili, H. Zhang, P. Wang, Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett. 13, 14–20 (2013)

    CAS  Google Scholar 

  6. P. Peerakiatkhajohn, J.-H. Yun, H. Chen, M. Lyu, T. Butburee, L. Wang, Stable hematite nanosheet photoanodes for enhanced photoelectrochemical water splitting. Adv. Mater. 28, 6405–6410 (2016)

    CAS  Google Scholar 

  7. T.W. Kim, K.-S. Choi, Nanoporous BiVO4, photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990 (2014)

    CAS  Google Scholar 

  8. D. Sharma, S. Upadhyay, V.R. Satsangi, R. Shrivastav, U.V. Waghmare, S. Dass, Improved photoelectrochemical water splitting performance of Cu2O/SrTiO3 heterojunction photoelectrode. J. Phys. Chem. C 118, 25320–25329 (2014)

    CAS  Google Scholar 

  9. X. Yang, A. Wolcott, G. Wang, A. Sobo, R.C. Fitzmorris, F. Qian, J.Z. Zhang, Y. Li, Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett. 9, 2331–2336 (2009)

    CAS  Google Scholar 

  10. L. Guo, Y. Chen, J. Su, M. Liu, Y. Liu, Obstacles of solar-powered photocatalytic water splitting for hydrogen production: a perspective from energy flow and mass flow. Energy 172, 1079–1086 (2019)

    CAS  Google Scholar 

  11. G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R.C. Fitzmorris, C. Wang, J.Z. Zhang, Y. Li, Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11, 3026–3033 (2011)

    CAS  Google Scholar 

  12. Z. Dong, D. Ding, T. Li, C. Ning, Ni-doped TiO2 nanotubes photoanode for enhanced photoelectrochemical water splitting. Appl. Surf. Sci. 443, 321–328 (2018)

    CAS  Google Scholar 

  13. M. Shao, F. Ning, M. Wei, D.G. Evans, X. Duan, Hierarchical nanowire arrays based on ZnO core − layered double hydroxide shell for largely enhanced photoelectrochemical water splitting. Adv. Func. Mater. 24, 580–586 (2014)

    CAS  Google Scholar 

  14. B.-S. Wang, R.-Y. Li, Z.-Y. Zhang, W. Xing, X.-L. Wu, G.-A. Cheng, R.-T. Zheng, An overlapping ZnO nanowire photoanode for photoelectrochemical water splitting. Catal. Today 321–322, 100–106 (2019)

    Google Scholar 

  15. S. Hilliard, G. Baldinozzi, D. Friedrich, S. Kressman, H. Strub, V. Artero, C. Laberty-Robert, Correction: mesoporous thin film WO3 photoanode for photoelectrochemical water splitting: a sol–gel dip coating approach. Sustain. Energy Fuels 1, 1204–1204 (2017)

    CAS  Google Scholar 

  16. T. Zhang, Z. Zhu, H. Chen, Y. Bai, S. Xiao, X. Zheng, Q. Xue, S. Yang, Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: a combined experimental and theoretical study. Nanoscale 7, 2933–2940 (2015)

    CAS  Google Scholar 

  17. M.M. Momeni, Y. Ghayeb, Visible light-driven photoelectrochemical water splitting on ZnO–TiO2 heterogeneous nanotube photoanodes. J. Appl. Electrochem. 45, 557–566 (2015)

    CAS  Google Scholar 

  18. H.M. Chen, C.K. Chen, Y.-C. Chang, C.-W. Tsai, R.-S. Liu, S.-F. Hu, W.-S. Chang, K.-H. Chen, Quantum dot monolayer sensitized ZnO nanowire-array photoelectrodes: true efficiency for water splitting. Angew. Chem. 122, 6102–6105 (2010)

    Google Scholar 

  19. C.X. Guo, Y. Dong, H.B. Yang, C.M. Li, Graphene quantum dots as a green sensitizer to functionalize ZnO nanowire arrays on F-doped SnO2 glass for enhanced photoelectrochemical water splitting. Adv. Energy Mater. 3, 997–1003 (2013)

    CAS  Google Scholar 

  20. S. Cao, X. Yan, Z. Kang, Q. Liang, X. Liao, Y. Zhang, Band alignment engineering for improved performance and stability of ZnFe2O4 modified CdS/ZnO nanostructured photoanode for PEC water splitting. Nano Energy 24, 25–31 (2016)

    CAS  Google Scholar 

  21. P.P. Patel, P.J. Hanumantha, O.I. Velikokhatnyi, M.K. Datta, D. Hong, B. Gattu, J.A. Poston, A. Manivannan, P.N. Kumta, Nitrogen and cobalt co-doped zinc oxide nanowires—viable photoanodes for hydrogen generation via photoelectrochemical water splitting. J. Power Sources 299, 11–24 (2015)

    CAS  Google Scholar 

  22. X. Long, F. Li, L. Gao, Y. Hu, H. Hu, J. Jin, J. Ma, Heterojunction and oxygen vacancy modification of ZnO nanorod array photoanode for enhanced photoelectrochemical water splitting. Chemsuschem 11, 4094–4101 (2018)

    CAS  Google Scholar 

  23. X. Li, F. Niu, J. Su, L. Guo, Photoelectrochemical performance dependence on geometric surface area of branched ZnO nanowires. ChemElectroChem 5, 3717–3722 (2018)

    CAS  Google Scholar 

  24. H. Han, F. Karlicky, S. Pitchaimuthu, S.H.R. Shin, A. Chen, Highly ordered n-doped carbon dots photosensitizer on metal–organic framework-decorated ZnO nanotubes for improved photoelectrochemical water splitting. Small, 0, 1902771 (2019)

  25. C. Zhang, M. Shao, F. Ning, S. Xu, Z. Li, M. Wei, D.G. Evans, X. Duan, Au nanoparticles sensitized ZnO nanorod@nanoplatelet core–shell arrays for enhanced photoelectrochemical water splitting. Nano Energy 12, 231–239 (2015)

    Google Scholar 

  26. X. Zhang, Y. Liu, Z. Kang, 3D branched ZnO nanowire arrays decorated with plasmonic Au nanoparticles for high-performance photoelectrochemical water splitting. ACS Appl. Mater. Interfaces. 6, 4480–4489 (2014)

    CAS  Google Scholar 

  27. K. Kakiuchi, E. Hosono, S. Fujihara, Enhanced photoelectrochemical performance of ZnO electrodes sensitized with N-719. J. Photochem. Photobiol., A 179, 81–86 (2006)

    CAS  Google Scholar 

  28. K.-S. Ahn, Y. Yan, S. Shet, T. Deutsch, J. Turner, M. Al-Jassim, Enhanced photoelectrochemical responses of ZnO films through Ga and N codoping. Appl. Phys. Lett. 91, 231909 (2007)

    Google Scholar 

  29. L. Yan, W. Zhao, Z. Liu, 1D ZnO/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting. Dalton Trans. 45, 11346–11352 (2016)

    CAS  Google Scholar 

  30. C. Liu, F. Meng, L. Zhang, D. Zhang, S. Wei, K. Qi, J. Fan, H. Zhang, X. Cui, CuO/ZnO heterojunction nanoarrays for enhanced photoelectrochemical water oxidation. Appl. Surf. Sci. 469, 276–282 (2019)

    CAS  Google Scholar 

  31. S. Ng, P. Kuberský, M. Krbal, J. Prikryl, V. Gärtnerová, D. Moravcová, H. Sopha, R. Zazpe, F.K. Yam, A. Jäger, L. Hromádko, L. Beneš, A. Hamáček, J.M. Macak, ZnO coated anodic 1D TiO2 nanotube layers: efficient photo-electrochemical and gas sensing heterojunction. Adv. Eng. Mater. 20, 1700589 (2018)

    Google Scholar 

  32. J.-S. Yang, J.-J. Wu, Low-potential driven fully-depleted BiVO4/ZnO heterojunction nanodendrite array photoanodes for photoelectrochemical water splitting. Nano Energy 32, 232–240 (2017)

    CAS  Google Scholar 

  33. Q. Nie, L. Yang, C. Cao, Y. Zeng, G. Wang, C. Wang, S. Lin, Interface optimization of ZnO nanorod/CdS quantum dots heterostructure by a facile two-step low-temperature thermal treatment for improved photoelectrochemical water splitting. Chem. Eng. J. 325, 151–159 (2017)

    CAS  Google Scholar 

  34. H. Kim, K. Yong, Highly efficient photoelectrochemical hydrogen generation using a quantum dot coupled hierarchical ZnO nanowires array. ACS Appl. Mater. Interfaces. 5, 13258–13264 (2013)

    CAS  Google Scholar 

  35. Y. Tang, J.-H. Yun, L. Wang, R. Amal, Y.H. Ng, Complete surface coverage of ZnO nanorod arrays by pulsed electrodeposited CuInS2 for visible light energy conversion. Dalton Trans. 44, 7127–7130 (2015)

    CAS  Google Scholar 

  36. R.K. Chava, M. Kang, Ag2S quantum dot sensitized zinc oxide photoanodes for environment friendly photovoltaic devices. Mater. Lett. 199, 188–191 (2017)

    CAS  Google Scholar 

  37. J. Han, Z. Liu, K. Guo, X. Zhang, T. Hong, B. Wang, AgSbS2 modified ZnO nanotube arrays for photoelectrochemical water splitting. Appl. Catal. B 179, 61–68 (2015)

    CAS  Google Scholar 

  38. G. Wang, X. Yang, F. Qian, J.Z. Zhang, Y. Li, Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. Nano Lett. 10, 1088–1092 (2010)

    CAS  Google Scholar 

  39. Y. Yang, W. Que, X. Zhang, Y. Xing, X. Yin, Y. Du, Facile synthesis of ZnO/CuInS2 nanorod arrays for photocatalytic pollutants degradation. J. Hazard. Mater. 317, 430–439 (2016)

    CAS  Google Scholar 

  40. S. Liu, X. Wang, W. Zhao, K. Wang, H. Sang, Z. He, Synthesis, characterization and enhanced photocatalytic performance of Ag2S-coupled ZnO/ZnS core/shell nanorods. J. Alloy. Compd. 568, 84–91 (2013)

    CAS  Google Scholar 

  41. Y.-K. Hsu, Y.-C. Chen, Y.-G. Lin, Novel ZnO/Fe2O3 core-shell nanowires for photoelectrochemical water splitting. ACS Appl. Mater. Interfaces. 7, 14157–14162 (2015)

    CAS  Google Scholar 

  42. Z. Braiek, A. Brayek, M. Ghoul, S. Ben Taieb, M. Gannouni, I. Ben Assaker, A. Souissi, R. Chtourou, Electrochemical synthesis of ZnO/In2S3 core–shell nanowires for enhanced photoelectrochemical properties. J. Alloys Compds. 653, 395–401 (2015)

    CAS  Google Scholar 

  43. S. Khanchandani, S. Kundu, A. Patra, A.K. Ganguli, Band gap tuning of ZnO/In2S3 core/shell nanorod arrays for enhanced visible-light-driven photocatalysis. J. Phys. Chem. C 117, 5558–5567 (2013)

    CAS  Google Scholar 

  44. K. Hara, K. Sayama, H. Arakawa, Semiconductor-sensitized solar cells based on nanocrystalline In2S3/In2O3 thin film electrodes. Sol. Energy Mater. Sol. Cells 62, 441–447 (2000)

    CAS  Google Scholar 

  45. X. Feng, Y. Chen, M. Wang, L. Guo, Hydrothermal synthesis of pyramid-like In2S3 film for efficient photoelectrochemical hydrogen generation. Int. J. Hydrogen Energy 42, 15085–15095 (2017)

    CAS  Google Scholar 

  46. Z. Braiek, I. BenAssaker, M. Gannouni, H. Alem, T. Roques-Carmes, R. Chtourou, Impact of In2S3 shells thickness on the electrochemical and optical properties of oriented ZnO/In2S3 core/shell nanowires. Int. J. Hydrogen Energy 42, 5694–5707 (2017)

    CAS  Google Scholar 

  47. C. Strothkämper, K. Schwarzburg, R. Schütz, R. Eichberger, A. Bartelt, Multiple-trapping governed electron transport and charge separation in ZnO/In2S3 core/shell nanorod heterojunctions. J. Phys. Chem. C 116, 1165–1173 (2012)

    Google Scholar 

  48. I. Gonzalez-Valls, B. Ballesteros, M. Lira-Cantu, Vertically aligned ZnO/InxSy core-shell nanorods for high efficient dye-sensitized solar cells. NANO 10(07), 1550103 (2015)

    CAS  Google Scholar 

  49. B. Subash, B. Krishnakumar, V. Pandiyan, M. Swaminathan, M. Shanthi, An efficient nanostructured Ag2S–ZnO for degradation of Acid Black 1 dye under day light illumination. Sep. Purif. Technol. 96, 204–213 (2012)

    CAS  Google Scholar 

  50. Y.-C. Chen, H.-H. Chang, Y.-K. Hsu, Synthesis of CuInS2 quantum dots/In2S3/ZnO nanowire arrays with high photoelectrochemical activity. ACS Sustain. Chem. Eng. 6, 10861–10868 (2018)

    CAS  Google Scholar 

  51. R.N. Bhattacharya, Solution growth and electrodeposited CuInSe2Thin films. J. Electrochem. Soc. 130, 2040–2042 (1983)

    CAS  Google Scholar 

  52. G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, C.A. Grimes, A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 90, 2011–2075 (2006)

    CAS  Google Scholar 

  53. R.-R. Su, Y.-X. Yu, Y.-H. Xiao, X. Yang, W.-D. Zhang, Earth abundant ZnO/CdS/CuSbS2 core-shell nanowire arrays as highly efficient photoanode for hydrogen evolution. Int. J. Hydrogen Energy 43, 6040–6048 (2018)

    CAS  Google Scholar 

  54. H. Mou, C. Song, Y. Zhou, B. Zhang, D. Wang, Design and synthesis of porous Ag/ZnO nanosheets assemblies as super photocatalysts for enhanced visible-light degradation of 4-nitrophenol and hydrogen evolution. Appl. Catal. B 221, 565–573 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully thank the financial supports from the National Natural Science Foundation of China (No. 51888103, 51925602), the China National Key Research and Development Plan Project (No. 2018YFB1502000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinzhan Su or Liejin Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 916 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Su, J. & Guo, L. Vertically aligned ZnO/In2S3 core/shell heterostructures with enhanced photoelectrochemical properties. J Mater Sci: Mater Electron 31, 15773–15784 (2020). https://doi.org/10.1007/s10854-020-04139-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04139-3

Navigation