Skip to main content

Advertisement

Log in

Sodium dodecyl sulfate-assisted fabrication of NiO nanowalls grown on nickel foam as supercapacitor electrode materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The NiO nanowalls which are directly grown on nickel foam (NiO NWs/NF) have been successfully synthesized via a facile sodium dodecyl sulfate-assisted hydrothermal process and subsequent annealing process. With the assistance of sodium dodecyl sulfate (SDS), ordered NiO nanowalls are formed by the NiO nanorods through a partial dissolution-redeposition process, which is proposed and verified by scan electron microscopy and high-resolution transmission electron microscopy. The addition amount of SDS highly affects both the microstructure and electrochemical performances of the NiO samples. The optimized NiO NWs/NF exhibits higher specific capacitance of 1799.8 F g−1 at 1 A g−1, excellent rate performance and superior cycle stability. The enhanced electrochemical performances benefit from the vertical growth of uniform nanowalls on the substrate, which provides open access and promotes ion/electron transport. In addition, an asymmetric supercapacitor was assembled and high energy density of 30.4 Wh kg−1 at the power density of 752.3 W kg−1 with capacitance retention of 83.7% after 5000 cycles was achieved. The results indicate that the as-prepared NiO NWs/NF material can be used as a potential binder-free electrode for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data and materials support published claims and comply with field standards.

References

  1. Q.Q. Hu, Z.X. Gu, X.T. Zheng, X.J. Zhang, Chem. Eng. J. 304, 223–231 (2016)

    CAS  Google Scholar 

  2. S.B. Wang, H.J. Liu, Z. Li, J.L. Zhu, J. Mater. Sci.-Mater. Electron. 30, 7524–7533 (2019)

    CAS  Google Scholar 

  3. Z. Wang, H.Y. Yue, Z.M. Yu, F. Yao, X. Gao, E.H. Guan, H.J. Zhang, W.Q. Wang, S.S. Song, J. Mater. Sci.-Mater. Electron. 30, 8537–8545 (2019)

    CAS  Google Scholar 

  4. P. Viet Hung, J.H. Dickerson, J. Phys. Chem. C 120, 5353–5360 (2016)

    Google Scholar 

  5. N.C. Maile, S.K. Shinde, R.T. Patil, A.V. Fulari, R.R. Koli, D.Y. Kim, D.S. Lee, V.J. Fulari, J. Mater. Sci.-Mater. Electron. 30, 3729–3743 (2019)

    CAS  Google Scholar 

  6. L. Kouchachvili, W. Yaici, E. Entchev, J. Power Sources 374, 237–248 (2018)

    CAS  Google Scholar 

  7. M. Hong, S. Xu, L. Yao, C. Zhou, N. Hu, Z. Yang, J. Hu, L. Zhang, Z. Zhou, H. Wei, Y. Zhang, Nanotechnology 29, 275401 (2018)

    Google Scholar 

  8. D.P. Dubal, N.R. Chodankar, D.H. Kim, P. Gomez-Romero, Chem. Soc. Rev. 47, 2065–2129 (2018)

    CAS  Google Scholar 

  9. M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.L. Taberna, C.P. Grey, B. Dunn, P. Simon, Nat. Energy 1, 16070 (2016)

    CAS  Google Scholar 

  10. H. Yi, H. Wang, Y. Jing, T. Peng, X. Wang, J. Power Sources 285, 281–290 (2015)

    CAS  Google Scholar 

  11. T. Edison, R. Atchudan, Y.R. Lee, Int. J. Hydrog. Energy 44, 2323–2329 (2019)

    Google Scholar 

  12. Z. Liu, W. Zhou, S. Wang, W. Du, H. Zhang, C. Ding, Y. Du, L. Zhu, J. Alloys Compd. 774, 137–144 (2019)

    CAS  Google Scholar 

  13. Z. Lv, Y. Luo, Y. Tang, J. Wei, Z. Zhu, X. Zhou, W. Li, Y. Zeng, W. Zhang, Y. Zhang, D. Qi, S. Pan, X.J. Loh, X. Chen, Adv. Mater. 30, 1704531 (2018)

    Google Scholar 

  14. A.M. Abdalla, R.P. Sahu, C.J. Wallar, R. Chen, I. Zhitomirsky, I.K. Puri, Nanotechnology 28, 075603 (2017)

    Google Scholar 

  15. S. Sahoo, J.-J. Shim, ACS Sustain. Chem. Eng. 5, 241–251 (2017)

    CAS  Google Scholar 

  16. G. Lee, Y. Cheng, C.V. Varanasi, J. Liu, J. Phys. Chem. C 118, 2281–2286 (2014)

    CAS  Google Scholar 

  17. W. Chen, D. Gui, J. Liu, Electrochim. Acta 222, 1424–1429 (2016)

    CAS  Google Scholar 

  18. M. Liu, X. Wang, D. Zhu, L. Li, H. Duan, Z. Xu, Z. Wang, L. Gan, Chem. Eng. J. 308, 240–247 (2017)

    CAS  Google Scholar 

  19. R.A. Patil, C.-P. Chang, R.S. Devan, Y. Liou, Y.-R. Ma, ACS Appl. Mater. Interfaces 8, 9872–9880 (2016)

    CAS  Google Scholar 

  20. X.H. Qi, W.J. Zheng, X.C. Li, G.H. He, Sci Rep. 6, 33241 (2016)

    CAS  Google Scholar 

  21. G.F. Cai, X. Wang, M.Q. Cui, P. Darmawan, J.X. Wang, A.L.S. Eh, P.S. Lee, Nano Energy 12, 258–267 (2015)

    CAS  Google Scholar 

  22. X. Wang, C.Y. Yan, A. Sumboja, P.S. Lee, Nano Energy 3, 119–126 (2014)

    CAS  Google Scholar 

  23. A.M. Elshahawy, K.H. Ho, Y.T. Hu, Z. Fan, Y.W.B. Hsu, C. Guan, Q.Q. Ke, J. Wang, CrystEngComm 18, 3256–3264 (2016)

    CAS  Google Scholar 

  24. S. Shahrokhian, S. Rahimi, R. Mohammadi, Int. J. Hydrog. Energy 43, 2256–2267 (2018)

    CAS  Google Scholar 

  25. H. Wang, J. Lu, S. Yao, W. Zhang, J. Alloys Compd. 744, 187–195 (2018)

    CAS  Google Scholar 

  26. M. Cakici, K.R. Reddy, F. Alonso-Marroquin, Chem. Eng. J. 309, 151–158 (2017)

    CAS  Google Scholar 

  27. C. Guan, X.M. Liu, W.N. Ren, X. Li, C.W. Cheng, J. Wang, Adv. Energy Mater. 7, 1602391 (2017)

    Google Scholar 

  28. L. Ma, X. Shen, H. Zhou, Z. Ji, K. Chen, G. Zhu, Chem. Eng. J. 262, 980–988 (2015)

    CAS  Google Scholar 

  29. B. Kirubasankar, P. Palanisamy, S. Arunachalam, V. Murugadoss, S. Angaiah, Chem. Eng. J. 355, 881–890 (2019)

    CAS  Google Scholar 

  30. B. Kirubasankar, V. Murugadoss, J. Lin, T. Ding, M.Y. Dong, H. Liu, J.X. Zhang, T.X. Li, N. Wang, Z.H. Guo, S. Angaiah, Nanoscale 10, 20414–20425 (2018)

    CAS  Google Scholar 

  31. X.M. Li, Q.G. Li, Y. Wu, M.C. Rui, H.B. Zeng, ACS Appl. Mater. Interfaces. 7, 19316–19323 (2015)

    CAS  Google Scholar 

  32. Z. Gao, W. Yang, J. Wang, N. Song, X. Li, Nano Energy 13, 306–317 (2015)

    CAS  Google Scholar 

  33. Y.J. Xu, L.C. Wang, P.Q. Cao, C.L. Cai, Y.B. Fu, X.H. Ma, J. Power Sources 306, 742–752 (2016)

    CAS  Google Scholar 

  34. X. Li, L. Wang, J. Shi, N. Du, G. He, ACS Appl. Mater. Interfaces 8, 17276–17283 (2016)

    CAS  Google Scholar 

  35. N. Wang, H. Song, H. Ren, J. Chen, M. Yao, W. Huang, W. Hu, S. Komarneni, Chem. Eng. J. 358, 531–539 (2019)

    CAS  Google Scholar 

  36. C. Wu, J. Cai, Q. Zhang, X. Zhou, Y. Zhu, P.K. Shen, K. Zhang, ACS Appl. Mater. Interfaces 7, 26512–26521 (2015)

    CAS  Google Scholar 

  37. R. Wang, C. Xu, J.-M. Lee, Nano Energy 19, 210–221 (2016)

    CAS  Google Scholar 

  38. C. Guan, Y.D. Wang, Y.T. Hu, J.L. Liu, K.H. Ho, W. Zhao, Z.X. Fan, Z.X. Shen, H. Zhang, J. Wang, J. Mater. Chem. A 3, 23283–23288 (2015)

    CAS  Google Scholar 

  39. H.W. Lai, Q. Wu, J. Zhao, L.M. Shang, H. Li, R.C. Che, Z.Y. Lyu, J.F. Xiong, L.J. Yang, X.Z. Wang, Z. Hu, Energy Environ. Sci. 9, 2053–2060 (2016)

    CAS  Google Scholar 

  40. F. Luan, G.M. Wang, Y.C. Ling, X.H. Lu, H.Y. Wang, Y.X. Tong, X.X. Liu, Y. Li, Nanoscale 5, 7984–7990 (2013)

    CAS  Google Scholar 

  41. C.X. Huang, Y.H. Ding, C. Hao, S.S. Zhou, X.H. Wang, H.W. Gao, L.L. Zhu, J.B. Wu, Chem. Eng. J. 378, 122202 (2019)

    CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of both authors.

Corresponding author

Correspondence to Fang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Liu, F. Sodium dodecyl sulfate-assisted fabrication of NiO nanowalls grown on nickel foam as supercapacitor electrode materials. J Mater Sci: Mater Electron 31, 13987–13997 (2020). https://doi.org/10.1007/s10854-020-03959-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03959-7

Navigation