Skip to main content

Advertisement

Log in

Electrolytes based on nano-2D interlayer structure of Al-pillared clays for solid-state lithium battery

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

As we all know, solid-state batteries (SSBs) which can effectively inhibit lithium dendrites have disadvantages such as low conductivity and poor cycling performance, and the preparation process of their solid electrolyte is complex and costly, which makes it difficult to meet the requirements of commercialization. Therefore, this paper proposes a strategy to prepare a new solid electrolytes (Li-IL@Al-PILC solid electrolyte) using the nano-2D interlayer structure of Al-pillared clay (Al-PILC) as Li+ channel through an impregnation method. This Li-IL@Al-PILC SSE at 15% Li-IL has many advantages, such as high conductivity (2.13 × 10−3 S/cm at 25 ℃), good thermal stability (up to 450 ℃), extremely wide electrochemical window (up to 5.5 V) and low cost. At the same time, the assembled battery exhibits good cycling performance, with capacities of 120 mAh/g after 1000 cycles at 0.5C for LiFePO4 and good compatibility with the electrode. Due to its good mechanical hardness and nano-2D interlayer interface, Li-IL @ Al-PILC SSE has a certain ability to inhibit the growth of lithium dendrites. Through the above results, it can indicate that Li-IL @ Al-PILC SSE owns a good prospect for lithium metal batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Chandrasekhar, V. Vivekananthan, G. Khandelwal et al., A fully packed water-proof, humidity resistant triboelectric nanogenerator for transmitting Morse code. Nano Energy 60, 850–856 (2019)

    CAS  Google Scholar 

  2. A. Chandrasekhar, V. Vivekananthan, S.-J. Kim, A fully packed spheroidal hybrid generator for water wave energy harvesting and self-powered position tracking. Nano Energy 69, 104439 (2020)

    CAS  Google Scholar 

  3. A. Chandrasekhar, G. Khandelwal, N.R. Alluri et al., Battery-free electronic smart toys: a step toward the commercialization of sustainable triboelectric nanogenerators. ACS Sustain. Chem. Eng. 6(5), 6110–6116 (2018)

    CAS  Google Scholar 

  4. A. Chandrasekhar, V. Vivekananthan, G. Khandelwal et al., A Sustainable human-machine interactive triboelectric nanogenerator towards a smart computer mouse. ACS Sustain. Chem. Eng. 7(7), 7177–7182 (2019)

    CAS  Google Scholar 

  5. V. Vivekananthan, A. Chandrasekhar, N.R. Alluri et al., Fe2O3 magnetic particles derived triboelectric-electromagnetic hybrid generator for zero-power consuming seismic detection. Nano Energy 64, 103926 (2019)

    CAS  Google Scholar 

  6. M. Li, J. Lu, Z. Chen et al., 30 Years of lithium-ion batteries. Adv. Mater. 30(33), 1800561 (2018)

    Google Scholar 

  7. J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359–367 (2001)

    CAS  Google Scholar 

  8. A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2(3), 16103 (2017)

    CAS  Google Scholar 

  9. F. Lei, S. Wei, S. Li et al., Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv. Energy Mater. 8(11), 1702657 (2018)

    Google Scholar 

  10. D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12(3), 194 (2017)

    CAS  Google Scholar 

  11. J. Lu, Z. Chen, F. Pan et al., High-performance anode materials for rechargeable lithium-ion batteries. Electrochem. Energy Rev. 1(1), 35–53 (2018)

    CAS  Google Scholar 

  12. M.D. Tikekar, S. Choudhury, Z. Tu et al., Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1(9), 16114 (2016)

    CAS  Google Scholar 

  13. A. Sharafi, S. Yu, M. Naguib et al., Impact of air exposure and surface chemistry on Li-Li7La3Zr2O12 interfacial resistance. J. Mater. Chem. A 5(26), 13475–13487 (2017)

    CAS  Google Scholar 

  14. C. Deviannapoorani, L. Dhivya, S. Ramakumar et al., Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets. J. Power Sources 240, 18–25 (2013)

    CAS  Google Scholar 

  15. Y. Inaguma, C. Liquan, M. Itoh et al., High ionic conductivity in lithium lanthanum titanate. Solid State Commun. 86(10), 689–693 (1993)

    CAS  Google Scholar 

  16. V. Thangadurai, H. Kaack, W.J.F. Weppner, Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta). J. Am. Ceram. Soc. 86(3), 437–440 (2003)

    CAS  Google Scholar 

  17. L. Li, S. Liu, A. Manthiram, Co3O4 nanocrystals coupled with O- and N-doped carbon nanoweb as a synergistic catalyst for hybrid Li-air batteries. Nano Energy 12, 852–860 (2015)

    CAS  Google Scholar 

  18. J. Mindemark, M.J. Lacey, T. Bowden et al., Beyond PEO—alternative host materials for Li + -conducting solid polymer electrolytes. Prog. Polym. Sci. 81, S0079670017301946 (2018)

    Google Scholar 

  19. Y.-J. Heo, H.I. Lee, J.W. Lee et al., Optimization of the pore structure of PAN-based carbon fibers for enhanced supercapacitor performances via electrospinning. Compos. B 161, 10–17 (2019)

    CAS  Google Scholar 

  20. Y. Gao, Z. Yan, J.L. Gray et al., Polymer-inorganic solid-electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nat. Mater. 18(4), 384 (2019)

    CAS  Google Scholar 

  21. Y. Tian, F. Ding, H. Zhong et al., Li6.75 La3Zr1.75Ta0.25O12 @amorphous Li3OCl composite electrolyte for solid state lithium-metal batteries. Energy Storage Mater. 14, S2405829718300965 (2018)

    Google Scholar 

  22. Y. Wang, E. Sahadeo, G. Rubloff et al., High-capacity lithium sulfur battery and beyond: a review of metal anode protection layers and perspective of solid-state electrolytes. J. Mater. Sci. 54(5), 3671–3693 (2019)

    CAS  Google Scholar 

  23. M.P. Singh, R.K. Singh, S. Chandra, Ionic liquids confined in porous matrices: physicochemical properties and applications. Prog. Mater Sci. 64(10), 73–120 (2014)

    CAS  Google Scholar 

  24. A. Fernicola, F. Croce, B. Scrosati et al., LiTFSI-BEPyTFSI as an improved ionic liquid electrolyte for rechargeable lithium batteries. J. Power Sources 174(1), 342–348 (2007)

    CAS  Google Scholar 

  25. F.J. Wishart, Energy applications of ionic liquids. Energy Environ. Sci. 2(9), 956 (2009)

    CAS  Google Scholar 

  26. J.L. Bideau, L. Viau, A. Vioux, Ionogels, ionic liquid based hybrid materials. Chem. Soc. Rev. 40(2), 907–925 (2011)

    Google Scholar 

  27. N. Chen, Y. Dai, Y. Xing et al., Biomimetic ant-nest ionogel electrolyte boosts the performance of dendrite-free lithium batteries. Energy Environ. Sci. 10(7), 1660–1667 (2017)

    CAS  Google Scholar 

  28. R. Ameloot, M. Aubrey, B.M. Wiers et al., Ionic conductivity in the metal-organic framework UiO-66 by dehydration and insertion of lithium tert-butoxide. Chemistry A 19(18), 5533–5536 (2013)

    CAS  Google Scholar 

  29. B.M. Wiers, M.-L. Foo, N.P. Balsara et al., A solid lithium electrolyte via addition of lithium isopropoxide to a metal-organic framework with open metal sites. J. Am. Chem. Soc. 133(37), 14522–14525 (2011)

    CAS  Google Scholar 

  30. K. Fujie, R. Ikeda, K. Otsubo et al., Lithium ion diffusion in a metal-organic framework mediated by an ionic liquid. Chem. Mater. 27(21), 7355–7361 (2015)

    CAS  Google Scholar 

  31. A.K. Tripathi, Y.L. Verma, V.K. Singh et al., Quasi solid-state electrolytes based on ionic liquid (IL) and ordered mesoporous matrix MCM-41 for supercapacitor application. J. Solid State Electrochem. 21(11), 1–7 (2017)

    Google Scholar 

  32. H. Chen, H. Tu, C. Hu et al., Cationic covalent organic framework nanosheets for fast Li-ion conduction. J. Am. Chem. Soc. 140(3), 896–899 (2018)

    CAS  Google Scholar 

  33. L. Han, Z. Wang, D. Kong et al., An ordered mesoporous silica framework based electrolyte with nanowetted interfaces for solid-state lithium batteries. J. Mater. Chem. A 6(43), 21280–21286 (2018)

    CAS  Google Scholar 

  34. Z. Wang, R. Tan, H. Wang et al., A metal-organic-framework-based electrolyte with nanowetted interfaces for high-energy-density solid-state lithium battery. Adv. Mater. 30(2), 1704436 (2017)

    Google Scholar 

  35. W.J. Roth, B. Gil, W. Makowski et al., Layer like porous materials with hierarchical structure. Chem. Soc. Rev. 45(12), 3400 (2015)

    Google Scholar 

  36. Y. Leng, Q. Li, Q. Tian et al., (Ce-Al)-oxide pillared bentonite: a high affinity sorbent for plutonium. J. Hazard. Mater. 352, 121 (2018)

    CAS  Google Scholar 

  37. J. Heard, E. Cejka, O. Maksym et al., 2D oxide nanomaterials to address the energy transition and catalysis. Adv. Mater. 31(3), 1801712 (2018)

    Google Scholar 

  38. A.M. Dunaev, V.B. Motalov, L.S. Kudin et al., Molecular and ionic composition of saturated vapor over EMImNTf 2 ionic liquid. J. Mol. Liq. 219, 599–601 (2016)

    CAS  Google Scholar 

  39. E. Bolimowska, F. Castiglione, J. Devemy et al., Investigation of Li+ cation coordination and transportation, by molecular modeling and NMR studies, in a LiNTf2-doped ionic liquid-vinylene carbonate mixture. J. Phys. Chem. B 122(36), 8560–8569 (2018)

    CAS  Google Scholar 

  40. Z. Mensinger, W. Wang, D. Keszler et al., Oligomeric group 13 hydroxide compounds—a rare but varied class of molecules. Chem. Soc. Rev. 41, 1019–1030 (2011)

    Google Scholar 

  41. K. Li, J. Lei, G. Yuan et al., Fe-, Ti-, Zr- and Al-pillared clays for efficient catalytic pyrolysis of mixed plastics. Chem. Eng. J. 317, 800–809 (2017)

    CAS  Google Scholar 

  42. P.F. Low, I. Ravina, J.L. White, Changes in b dimension of Na-Mont-morillonite with interlayer swelling. Nature 226(5244), 445–446 (1970)

    CAS  Google Scholar 

  43. K. Bahranowski, A. Kielski, J. Podobi et al., Physico chemical characterization and catalytic properties of copper-doped alumina-pillared montmorillonites. Clays Clay Miner. 46(1), 98–102 (1998)

    CAS  Google Scholar 

  44. K. Bahranowski, R. Dula, M. Łabanowska et al., ESR study of Cu centers supported on Al-, Ti-, and Zr-pillared montmorillonite clays. Appl. Spectrosc. 50(11), 1439–1445 (1996)

    CAS  Google Scholar 

  45. A.M.D. Andrés, J. Merino, J.C. Galván et al., Synthesis of pillared clays assisted by microwaves. Mater. Res. Bull. 34(4), 641–651 (1999)

    Google Scholar 

  46. W.H. Casey, Large aqueous aluminum hydroxide molecules. Chem. Rev. 106(1), 1–16 (2006)

    CAS  Google Scholar 

  47. C. Pesquera, C. Blanco, F. González, Montmorillonites with mixed aluminum-lanthanide oxide pillars, in Materials Syntheses: A Practical Guide, ed. by U. Schubert, N. Hüsing, R. Laine (Springer-Verlag, Wien, New York, 2008), pp. 59–63

    Google Scholar 

  48. S. Choudhury, R. Mangal, A. Agrawal et al., A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nat. Commun. 6, 10101 (2015)

    CAS  Google Scholar 

  49. A.K. Tripathi, R.K. Singh, Development of ionic liquid and lithium salt immobilized MCM-41 quasi solid-liquid electrolytes for lithium batteries. J. Energy Storage 15, 283–291 (2018)

    Google Scholar 

  50. A. Wang, S. Kadam, L. Hong et al., Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. Comput. Mater. 4(1), 15 (2018)

    Google Scholar 

  51. A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2(4), 16103 (2017)

    CAS  Google Scholar 

  52. S. Kim, H. Oguchi, N. Toyama et al., A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries. Nat. Commun. 10(1), 1–9 (2019)

    Google Scholar 

  53. T. Matsuo, Y. Gambe, Y. Sun et al., Bipolar stacked quasi-all-solid-state lithium secondary batteries with output cell potentials of over 6 V. Sci. Rep. 4, 6084 (2014)

    CAS  Google Scholar 

  54. Z. Huang, R.-A. Tong, J. Zhang et al., Blending Poly(ethylene oxide) and Li6.4La3Zr1.4Ta0.6O12 by Haake Rheomixer without any solvent: a low-cost manufacture method for mass production of composite polymer electrolyte. J. Power Sources 451, 227797 (2020)

    CAS  Google Scholar 

  55. D. Shao, L. Yang, K. Luo et al., Preparation and performances of the modified gel composite electrolyte for application of quasi-solid-state lithium sulfur battery. Chem. Eng. J. 389, 124300 (2020)

    CAS  Google Scholar 

  56. L. Chen, W. Li, L.Z. Fan et al., Intercalated electrolyte with high transference number for dendrite-free solid-state lithium batteries. Adv. Funct. Mater. 29, 1901047 (2019)

    Google Scholar 

  57. S. Kim, H. Oguchi, N. Toyama et al., A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries. Nat. Commun. 10, 1–9 (2019)

    Google Scholar 

  58. Y. Tian, F. Ding, H. Zhong et al., Li6.75La3Zr1.75Ta0.25O12@amorphous Li3OCl composite electrolyte for solid state lithium-metal batteries. Energy Storage Mater. 14, 49–57 (2018)

    Google Scholar 

  59. S.-J. Choi, S.-H. Choi, A.D. Bui et al., LiI-doped sulfide solid electrolyte: enabling a high-capacity slurry-cast electrode by low-temperature post-sintering for practical all-solid-state lithium batteries. ACS Appl. Mater. Interfaces. 10(37), 31404–31412 (2018)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihui Ding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, H., Ding, Z. Electrolytes based on nano-2D interlayer structure of Al-pillared clays for solid-state lithium battery. J Mater Sci: Mater Electron 31, 13874–13888 (2020). https://doi.org/10.1007/s10854-020-03947-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03947-x

Navigation