Skip to main content
Log in

Evaluation of diode characteristics for fully vertical β-Ga2O3 on silicon (100) substrate

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this article, β-Ga2O3 film was deposited on the p-Si (100) substrate using pulsed laser deposition (PLD) technique for rapidly emerging Ga2O3-based Schottky barrier diodes (SBDs). Although X-ray diffraction (XRD) result reveals a polycrystalline trending film, a smooth and uniform as-grown surface has been characterized by atomic force microscope (AFM) and field-emission scanning electron microscope (FESEM). Further, we have investigated metal–semiconductor (M–S) contact behavior of the fully vertical SBDs with the four different metals such as aluminum (Al), silver (Ag), gold (Au), and platinum (Pt) on Ga2O3 after forming ohmic contacts on the backside of the Si substrate. The barrier heights of all four metals are typically in the range of 0.51–0.69 eV and 0.72–1.41 eV as obtained from the current–voltage (IV) and capacitance–voltage (CV) characteristics, respectively. The carrier concentration is ~ 1016 cm−3 as calculated using CV characteristics. The power device indices, namely breakdown voltage (VBR) of 19, 26, 90, and 99 V and the on-state resistance (RON) values ~ 19.82, 149.19, 7.45 and 156.25 Ω cm2 are also obtained for the Al/Ga2O3, Ag/Ga2O3, Au/Ga2O3, and Pt/Ga2O3 diodes, respectively. The Baliga Figure of Merits (V2BR/RON) for the Au/Ga2O3 diode is found out to be the highest (90.73 W cm−2). As the SBDs are fabricated on n-Ga2O3/p-Si heterojunction, it is expected to have two back-to-back diodes in the device structure. However, non-existence of back-to-back diodes has been confirmed by temperature dependence IV characteristics due to possible Poole–Frenkel (P–F) tunneling at the Ga2O3/Si heterojunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13.
Fig. 14

Similar content being viewed by others

References

  1. S.I. Stepanov, V.I. Nikolaev, V.E. Bougrov, A.E. Romanov, Rev. Adv. Mater. Sci 44, 63 (2016)

    CAS  Google Scholar 

  2. J. Zhang, J. Shi, D.-C. Qi, L. Chen, K.H.L. Zhang, APL Mater. 8, 020906 (2020)

    Google Scholar 

  3. B. Fu, Z. Jia, W. Mu, Y. Yin, J. Zhang, X. Tao, J. Semicond. 40, 011804 (2019)

    CAS  Google Scholar 

  4. A. Mondal, M.K. Yadav, S. Shringi, A. Bag, Nanotechnology 31, 294002 (2020)

    Google Scholar 

  5. Y.-W. Huan, S.-M. Sun, C.-J. Gu, W.-J. Liu, S.-J. Ding, H.-Y. Yu, C.-T. Xia, D.W. Zhang, Nanoscale Res. Lett. 13, 246 (2018)

    Google Scholar 

  6. M.K. Yadav, A. Mondal, S. Das, S.K. Sharma, A. Bag, J. Alloys Compd. 819, 153052 (2020)

    Google Scholar 

  7. M.K. Yadav, A. Mondal, S. Shringi, S.K. Sharma, A. Bag, Semicond. Sci. Technol. 35, 085009 (2020)

    Google Scholar 

  8. H. Xue, Q. He, G. Jian, S. Long, T. Pang, M. Liu, Nanoscale Res. Lett. 13, 290 (2018)

    Google Scholar 

  9. A. Bag, P. Das, R. Kumar, P. Mukhopadhyay, S. Majumdar, S. Kabi, D. Biswas, Physica E 74, 59 (2015)

    CAS  Google Scholar 

  10. M.K. Yadav, K.P. Pradhan, P.K. Sahu, Adv. Nat. Sci. 7, 25011 (2016)

    Google Scholar 

  11. M. Higashiwaki, H. Murakami, Y. Kumagai, A. Kuramata, Jpn. J. Appl. Phys. 55, 1202A1 (1202A)

    Google Scholar 

  12. M. Higashiwaki, K. Sasaki, M.H. Wong, T. Kamimura, K. Goto, K. Nomura, Q.T. Thieu, R. Togashi, H. Murakami, Y. Kumagai, et al., in Compound Semiconductor Integrated Circuit Symposium (CSICS), 2015 IEEE (2015), pp. 1–4

  13. Z. Hu, H. Zhou, K. Dang, Y. Cai, Z. Feng, Y. Gao, J. Zhang, A.Y. Hao, IEEE J. Electron Devices Soc. 6, 815 (2018)

    CAS  Google Scholar 

  14. P. Chen, R. Zhang, Z.Z. Chen, Y.G. Zhou, S.Y. Xie, Y. Shi, B. Shen, S.L. Gu, Z.C. Huang, Mater. Res. Soc. Internet J. Nitride Semicond. Res. 5, 866 (2000)

    Google Scholar 

  15. C. Huang, A. Ludviksson, R.M. Martin, Surf. Sci. 265, 314 (1992)

    CAS  Google Scholar 

  16. R. Franchy, M. Eumann, G. Schmitz, Surf. Sci. 470, 337 (2001)

    CAS  Google Scholar 

  17. Y. Jeliazova, R. Franchy, Surf. Sci. 527, 57 (2003)

    CAS  Google Scholar 

  18. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, S. Yamakoshi, Phys. Status Solidi (A) 211, 21 (2014)

    CAS  Google Scholar 

  19. Y. Yao, R. Gangireddy, J. Kim, K.K. Das, R.F. Davis, L.M. Porter, J. Vac. Sci. Technol. B 35, 03D113 (2017)

    Google Scholar 

  20. E. Farzana, Z. Zhang, P.K. Paul, A.R. Arehart, S.A. Ringel, Appl. Phys. Lett. 110, 202102 (2017)

    Google Scholar 

  21. S. Ahn, F. Ren, L. Yuan, S.J. Pearton, A. Kuramata, ECS J. Solid State Sci. Technol. 6, P68 (2017)

    CAS  Google Scholar 

  22. K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, S. Yamakoshi, IEEE Electron Device Lett. 34, 493 (2013)

    CAS  Google Scholar 

  23. D. Khan, D. Gajula, S. Okur, G.S. Tompa, G. Koley, ECS J. Solid State Sci. Technol. 8, Q106 (2019)

    CAS  Google Scholar 

  24. W. Li, Z. Hu, K. Nomoto, Z. Zhang, J.-Y. Hsu, Q.T. Thieu, K. Sasaki, A. Kuramata, D. Jena, H.G. Xing, Appl. Phys. Lett. 113, 202101 (2018)

    Google Scholar 

  25. L. Du, Q. Xin, M. Xu, Y. Liu, W. Mu, S. Yan, X. Wang, G. Xin, Z. Jia, X.-T. Tao, A. Song, IEEE Electron Device Lett. 40, 451 (2019)

    CAS  Google Scholar 

  26. H. Zhou, Q. Feng, J. Ning, C. Zhang, P. Ma, Y. Hao, Q. Yan, J. Zhang, Y. Lv, Z. Liu, Y. Zhang, K. Dang, P. Dong, Z. Feng, IEEE Electron Device Lett. 40, 1788 (2019)

    CAS  Google Scholar 

  27. G. Shin, H.-Y. Kim, J. Kim, Korean J. Chem. Eng. 35, 574 (2018)

    CAS  Google Scholar 

  28. X.C. Guo, N.H. Hao, D.Y. Guo, Z.P. Wu, Y.H. An, X.L. Chu, L.H. Li, P.G. Li, M. Lei, W.H. Tang, J. Alloy. Compd. 660, 136 (2016)

    CAS  Google Scholar 

  29. Y. Kokubun, K. Miura, F. Endo, S. Nakagomi, Appl. Phys. Lett. 90, 31912 (2007)

    Google Scholar 

  30. A.A. Dakhel, J. Mater. Sci. 47, 3034 (2012)

    CAS  Google Scholar 

  31. Y. Su, M. Gao, X. Meng, Y. Chen, Q. Zhou, L. Li, J. Phys. Chem. Solids 70, 1062 (2009)

    CAS  Google Scholar 

  32. J. Tao, H.-L. Lu, Y. Gu, H.-P. Ma, X. Li, J.-X. Chen, W.-J. Liu, H. Zhang, J.-J. Feng, Appl. Surf. Sci. 476, 733 (2019)

    CAS  Google Scholar 

  33. K.D. Chabak, K.D. Leedy, A.J. Green, S. Mou, A.T. Neal, T. Asel, E.R. Heller, N.S. Hendricks, K. Liddy, A. Crespo, N.C. Miller, M.T. Lindquist, N.A. Moser, R.C. Fitch, D.E. Walker, D.L. Dorsey, G.H. Jessen, Semicond. Sci. Technol. 35, 013002 (2020)

    CAS  Google Scholar 

  34. B.H. Choi, H.B. Im, J.S. Song, K.H. Yoon, Thin Solid Films 193, 712 (1990)

    Google Scholar 

  35. Q. Feng, F. Li, B. Dai, Z. Jia, W. Xie, X. Tong, L. Xiaoli, X. Taoc, J. Zhang, Appl. Surf. Sci. 359, 847 (2015)

    CAS  Google Scholar 

  36. D. Shiojiri, R. Yamauchi, D. Fukuda, N. Tsuchimine, J. Cryst. Growth 424, 38 (2015)

    CAS  Google Scholar 

  37. F. Zhang, K. Saito, T. Tanaka, M. Nishio, Q. Guo, J. Mater. Sci. 26, 9624 (2015)

    CAS  Google Scholar 

  38. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, New York, 2006)

    Google Scholar 

  39. U. Holzwarth, N. Gibson, Nat. Nanotechnol. 6, 534 (2011)

    CAS  Google Scholar 

  40. S. Turuvekere, N. Karumuri, A.A. Rahman, A. Bhattacharya, A. DasGupta, N. DasGupta, IEEE Trans. Electron Devices 60, 3157 (2013)

    CAS  Google Scholar 

  41. Y. Xu, X. Chen, D. Zhou, F. Ren, J. Zhou, S. Bai, H. Lu, S. Gu, R. Zhang, Y. Zheng, J. Ye, IEEE Trans. Electron Devices 66, 2276 (2019)

    Google Scholar 

  42. H. Schroeder, J. Appl. Phys. 117, 215103 (2015)

    Google Scholar 

  43. S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986)

    CAS  Google Scholar 

  44. R.K. Gupta, K. Ghosh, P.K. Kahol, Curr. Appl. Phys. 9, 933 (2009)

    Google Scholar 

  45. H. Mokhtari, M. Benhaliliba, J. Semicond. 38, 116001 (2017)

    Google Scholar 

  46. Z. Çaldıran, A.R. Deniz, Ş. Aydoğan, A. Yesildag, D. Ekinci, Superlattices Microstruct. 56, 45 (2013)

    Google Scholar 

  47. D.-T. Phan, R.K. Gupta, G.-S. Chung, A.A. Al-Ghamdi, O.A. Al-Hartomy, F. El-Tantawy, F. Yakuphanoglu, Sol. Energy 86, 2961 (2012)

    CAS  Google Scholar 

  48. F.A. Mir, Optik 126, 24 (2015)

    CAS  Google Scholar 

  49. H. Zhang, J. Deng, Y. He, P. Duan, X. Liang, R. Li, C. Qin, Z. Pan, Z. Bai, J. Wang, J. Mater. Sci. 29, 19028 (2018)

    CAS  Google Scholar 

  50. F. Yakuphanoglu, J. Alloys Compd. 494, 451 (2010)

    CAS  Google Scholar 

  51. D. Splith, S. Müller, F. Schmidt, H. von Wenckstern, J.J. van Rensburg, W.E. Meyer, M. Grundmann, Phys. Status Solidi (A) 211, 40 (2014)

    CAS  Google Scholar 

  52. S. Oh, G. Yang, J. Kim, ECS J. Solid State Sci. Technol. 6, Q3022 (2017)

    CAS  Google Scholar 

  53. M.J. Tadjer, V.D. Wheeler, D.I. Shahin, C.R. Eddy, F.J. Kub, ECS J. Solid State Sci. Technol. 6, P165 (2017)

    CAS  Google Scholar 

  54. A. Jayawardena, A.C. Ahyi, S. Dhar, Semicond. Sci. Technol. 31, 115002 (2016)

    Google Scholar 

  55. J.-S. Jang, T.-Y. Seong, Appl. Phys. Lett. 76, 2743 (2000)

    CAS  Google Scholar 

  56. F.A. Padovani, R. Stratton, Solid-State Electron. 9, 695 (1966)

    Google Scholar 

  57. A. Li, Q. Feng, J. Zhang, Z. Hu, Z. Feng, K. Zhang, C. Zhang, H. Zhou, Y. Hao, Superlattices Microstruct. 119, 212 (2018)

    CAS  Google Scholar 

  58. Z. Hu, H. Zhou, Q. Feng, J. Zhang, C. Zhang, K. Dang, Y. Cai, Z. Feng, Y. Gao, X. Kang, Y. Hao, IEEE Electron Device Lett. 39, 1 (2018)

    Google Scholar 

  59. Q. He, W. Mu, H. Dong, S. Long, Z. Jia, H. Lv, Q. Liu, M. Tang, X. Tao, M. Liu, Appl. Phys. Lett. 110, 093503 (2017)

    Google Scholar 

  60. K. Konishi, K. Goto, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, M. Higashiwaki, Appl. Phys. Lett. 110, 103506 (2017)

    Google Scholar 

  61. B. Song, A.K. Verma, K. Nomoto, M. Zhu, D. Jena, H.G. Xing, in 2016 74th Annual Device Research Conference (DRC) (IEEE, 2016), pp. 1–2

  62. H. Altuntas, I. Donmez, C. Ozgit-Akgun, N. Biyikli, J. Vac. Sci. Technol. A 32, 041504 (2014)

    Google Scholar 

  63. H. Altuntas, I. Donmez, C. Ozgit-Akgun, N. Biyikli, J. Alloys Compd. 593, 190 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Centre for Design and Fabrication of Electronic Devices (C4DFED), Advanced Material Research Centre (AMRC), and Nanoscale Materials & Devices Lab, IIT Mandi for the partial characterization and fabrication facilities. We would also like to thank SERB, DST (ECR/2017/000810) and SPARC, MHRD, (P1456) Govt. of India for funding the projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankush Bag.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, M.K., Sharma, S.K. & Bag, A. Evaluation of diode characteristics for fully vertical β-Ga2O3 on silicon (100) substrate. J Mater Sci: Mater Electron 31, 13845–13856 (2020). https://doi.org/10.1007/s10854-020-03944-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03944-0

Navigation