Skip to main content
Log in

Electrochemical method for determination of levodopa in the presence of uric acid using In2S3 nanospheres on 3D graphene-modified ITO glass electrode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

An electrochemical sensor that can sensitively detect levodopa without fragile and expensive antibodies has been prepared on the basis of indium sulfide and graphene. The indium sulfide nanospheres synthesized by a hydrothermal method were grown on the surface of three-dimensional graphene prepared by chemical vapor deposition. The graphene maintains a good 3D structure and the indium sulfide nanospheres increases the specific surface area of graphene. The composite possesses a low detection limit of 87 nM (S/N = 3) and the sensitivity of it reaches 1.98 μA μM−1 cm−1. Also, good electrochemical performance, selectivity, and stability make it available to be used for detecting real biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Morgan, K.D. Sethi, Levodopa and the progression of Parkinson’s disease. Curr. Neurol. Neurosci. Repo. 5(4), 261–262 (2005)

    Article  Google Scholar 

  2. P.J. Harrison, D.R. Weinberger, Schizophrenia genes, gene expression, and neuropathology: On the matter of their convergence. Mol. Psychiatry 10(1), 40–68 (2005)

    Article  CAS  Google Scholar 

  3. J.F. Leckman, Tourette’s syndrome. Lancet 360(9345), 1577–1586 (2002)

    Article  Google Scholar 

  4. R.K. Osenbach, Guest editor commentary. Tech. Neurosurg. 8(3), 191–194 (2003)

    Article  Google Scholar 

  5. S. Geffe, K.A. Schindlbeck, A. Mehl, J. Jende, F. Klostermann, F. Marzinzik, The single intake of levodopa modulates implicit learning in drug naïve, de novo patients with idiopathic Parkinson’s disease. J. Neural Transm. 123(6), 601–610 (2016)

    Article  CAS  Google Scholar 

  6. P. Ceroni, A. Credi, M. Venturi, Electrochemical methods. Analytical Methods in Supramolecular Chemistry, 2012(1,2):371–457.

  7. H. Zahra, J. Fahimeh, Simultaneous determination of l-DOPA, l-tyrosine and uric acid by cysteic acid—modified glassy carbon electrode. Mater. Sci. Eng. C 5(98), 496–502 (2019)

    Google Scholar 

  8. K.Y. Goud, C. Moonla, R.K. Mishra et al., Wearable electrochemical microneedle sensor for continuous monitoring of levodopa: toward Parkinson management. ACS Sens. 4(8), 2196–2204 (2019)

    Article  CAS  Google Scholar 

  9. M.S. Raghu, L. Parashuram, K.Y. Kumar et al., Facile green synthesis of boroncarbonitride using orange peel; its application in high-performance supercapacitors and detection of levodopa in real samples. Mater. Today Commun. S2352–4928(19), 31119–31125 (2020)

    Google Scholar 

  10. F. Yu, W. Zhao, S.F. Liu, A straightforward chemical approach for excellent In2S3 electron transport layer for high-efficiency perovskite solar cells. RSC Adv. 9(2), 884–890 (2019)

    Article  CAS  Google Scholar 

  11. S. Wang, B.Y. Guan, Y. Lu, X.W. Lou, Formation of hierarchical In2S3-CdIn2S4 heterostructured nanotubes for efficient and stable visible light CO2 reduction. J. Am. Chem. Soc. 139(48), 17305–17308 (2017)

    Article  CAS  Google Scholar 

  12. C.W.C. Mu, Microwave synthesized In2S3@CNTs with excellent properties in lithium-ion battery and electromagnetic wave absorption. Laryngoscope 36(2), 157–161 (2018)

    Google Scholar 

  13. W. Sheng, Y. Song, M. Dou, J. Ji, F. Wang, Constructing 1D hierarchical heterostructures of MoS2/In2S3 nanosheets on CdS nanorod arrays for enhanced photoelectrocatalytic H2 evolution. Appl. Surf. Sci. 436(1), 613–623 (2018)

    Article  CAS  Google Scholar 

  14. F. Mori, M. Kubouchi, Y. Arao, Effect of graphite structures on the productivity and quality of few-layer graphene in liquid-phase exfoliation. J. Mater. Sci. 53(18), 12807–12815 (2018)

    Article  CAS  Google Scholar 

  15. K. Jian, A. Yan, I. Külaots, G.P. Crawford, R.H. Hurt, Reconstruction and hydrophobicity of nanocarbon surfaces composed solely of graphene edges. Carbon 44(10), 2102–2106 (2006)

    Article  CAS  Google Scholar 

  16. H.Y. Yue, H. Zhang, S. Huang et al., Synthesis of ZnO nanowire arrays/3D graphene foam and application for determination of levodopa in the presence of uric acid. Biosens. Bioelectron. 89(15), 592–597 (2017)

    Article  CAS  Google Scholar 

  17. J.A. Elliott, Y. Shibuta, H. Amara, C. Bichara, E.C. Neyts, Atomistic modelling of CVD synthesis of carbon nanotubes and graphene. Nanoscale 5(15), 6662–6676 (2013)

    Article  CAS  Google Scholar 

  18. L. Stobinski, B. Lesiak, A. Malolepszy et al., Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron Spectrosc. Relat. Phenom. 195(15), 145–154 (2014)

    Article  CAS  Google Scholar 

  19. Y. Liu, M. Zhang, Y. Gao, R. Zhang, Y. Qian, Synthesis and optical properties of cubic In2S3 hollow nanospheres. Mater. Chem. Phys. 101(2–3), 362–366 (2007)

    CAS  Google Scholar 

  20. A.C. Ferrari, J.C. Meyer, V. Scardaci et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 1–4 (2006)

    Article  Google Scholar 

  21. B.F. Nazarov, E.V. Larionova, A.G. Stromberg, I.S. Antipenko, Theory of the reversible electrode process in case of cyclic voltammetry at finite thickness film electrode. Electrochem. Commun. 9(8), 1936–1944 (2007)

    Article  CAS  Google Scholar 

  22. S. Yoshida, T. Sudo, M. Kato et al., Effects of composition on redox behaviors of antimony or arsenic ion in silicate melts by differential pulse voltammetry. J. Non-Cryst. Solids 356(50–51), 2842–2849 (2010)

    Article  CAS  Google Scholar 

  23. H. Liu, N. Li, H. Zhang, F. Zhang, X. Su, A simple and convenient fluorescent strategy for the highly sensitive detection of dopamine and ascorbic acid based on graphene quantum dots. Talanta 189(1), 190–195 (2018)

    Article  CAS  Google Scholar 

  24. K. Movlaee, H. Beitollahi, M.R. Ganjali, P. Norouzi, Electrochemical platform for simultaneous determination of levodopa, acetaminophen and tyrosine using a graphene and ferrocene modified carbon paste electrode. Microchim. Acta 184(9), 3281–3289 (2017)

    Article  CAS  Google Scholar 

  25. M. Baghaeri, H. Beitollahi, A. Akbari, S. Farhadi, Highly sensitive nanostructured electrochemical sensor based on carbon nanotubes-Pt nanoparticles paste electrode for simultaneous determination of levodopa and tyramine. Russ. J. Electrochem. 54(3), 292–301 (2018)

    Article  Google Scholar 

  26. V. Renganathan, R. Sasikumar, S.M. Chen et al., Detection of neurotransmitter (Levodopa) in vegetables using nitrogen-doped graphene oxide incorporated nickel oxide modified electrode. Int. J. Electrochem. Sci. 13(7), 7206–7217 (2018)

    Article  CAS  Google Scholar 

  27. V. Baião, L.I.N. Tomé, C.M.A. Brett, Iron oxide nanoparticle and multiwalled carbon nanotube modified glassy carbon electrodes. Application to levodopa detection. Electroanalysis 30(7), 1342–1348 (2018)

    Article  Google Scholar 

  28. J. Zhang, Q. Wang, Z. Sun, B. Buhe, X. He, Fabrication the hybrization of ZnO nanorods–graphene nanoslices and their electrochemical properties to levodopa in the presence of uric acid. J. Mater. Sci.: Mater. Electron. 29(19), 16894–16902 (2018)

    CAS  Google Scholar 

  29. A. Hatefi-Mehrjardi, M.A. Karimi, A. Barani, M. Soleymanzadeh, Poly-dianix blue/multi-walled carbon nanotube modified electrode for detection of levodopa in the presence of high concentrations of ascorbic and uric acids. Acta Chim. Slov. 64(1), 193–201 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the fundamental research foundation for University of Heilongjiang province (LGYC2018JQ012) and the foundation for selected overseas Chinese Scholar, Ministry of personnel of Heilongjiang province (2018383).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyan Yue.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 584 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Yue, H., Huang, S. et al. Electrochemical method for determination of levodopa in the presence of uric acid using In2S3 nanospheres on 3D graphene-modified ITO glass electrode. J Mater Sci: Mater Electron 31, 13680–13687 (2020). https://doi.org/10.1007/s10854-020-03925-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03925-3

Navigation