Skip to main content
Log in

Synthesis and resistance to helium swelling of Li2TiO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The work is devoted to the study of the effect of helium ion irradiation on the properties of ceramics based on Li2TiO3, which have great potential as a breeding blanket in the design of thermonuclear reactors. The choice of the type of ions and irradiation doses of 1–5 × 1017 ion/cm2 is due to the possibility of modeling the processes of defect formation as a result of the accumulation of helium in the structure of the surface layer of ceramics during their operation. As research methods, scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were used and the dielectric properties were studied by impedance spectroscopy. It was found that at irradiation doses of 1–3 × 1017 ion/cm2, these ceramics have high radiation resistance to structural changes, while increasing the radiation dose above 5 × 1017 ion/cm2 leads to significant changes in the properties of ceramics, which are caused by partial degradation of the surface layer of ceramics in the process exposure. As a result of measuring the strength characteristics, it was determined that the greatest decrease in the hardness of the surface layer occurs at an irradiation dose of 5 × 1017 ion/cm2. In the course of studying the dielectric characteristics, it was found that the main changes are associated with a decrease in the dielectric constant, as well as an insignificant shift of the maximum towards high temperatures, which is due to an increase in the concentration of defects in the structure of ceramics arising during irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Salavati-Niasari, Synthesis and characterization of host (nanodimensional pores of zeolite-Y)–guest [unsaturated 16-membered octaaza–macrocycle manganese (II), cobalt (II), nickel (II), copper (II), and zinc (II) complexes] nanocomposite materials. Chem. Lett. 34(10), 1444–1445 (2005)

    CAS  Google Scholar 

  2. F. Mohandes, F. Davar, M. Salavati-Niasari, Magnesium oxide nanocrystals via thermal decomposition of magnesium oxalate. J. Phys. Chem. Solids 71(12), 1623–1628 (2010)

    CAS  Google Scholar 

  3. M. Salavati-Niasari, M.R. Loghman-Estarki, F. Davar, Controllable synthesis of nanocrystalline CdS with different morphologies by hydrothermal process in the presence of thioglycolic acid. Chem. Eng. J. 145(2), 346–350 (2008)

    CAS  Google Scholar 

  4. M. Salavati-Niasari, D. Ghanbari, M.R. Loghman-Estarki, Star-shaped PbS nanocrystals prepared by hydrothermal process in the presence of thioglycolic acid. Polyhedron 35(1), 149–153 (2012)

    CAS  Google Scholar 

  5. S. Mortazavi-Derazkola, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Novel simple solvent-less preparation, characterization and degradation of the cationic dye over holmium oxide ceramic nanostructures. Ceram. Int. 41(8), 9593–9601 (2015)

    CAS  Google Scholar 

  6. T. Gladkikh et al., Changes in optical and structural properties of AlN after irradiation with C2+ ions of 40 keV. Vacuum 161, 103–110 (2019)

    CAS  Google Scholar 

  7. F. Davar, M. Salavati-Niasari, Synthesis and characterization of spinel-type zinc aluminate nanoparticles by a modified sol–gel method using new precursor. J. Alloys Compd. 509(5), 2487–2492 (2011)

    CAS  Google Scholar 

  8. P. Mehdizadeh et al., Green synthesis using cherry and orange juice and characterization of TbFeO3 ceramic nanostructures and their application as photocatalysts under UV light for removal of organic dyes in water. J. Clean. Prod. 252, 119765 (2020)

    CAS  Google Scholar 

  9. M. Salavati-Niasari, A. Sobhani, F. Davar, Synthesis of star-shaped PbS nanocrystals using single-source precursor. J. Alloys Compd. 507(1), 77–83 (2010)

    CAS  Google Scholar 

  10. Y. Orooji et al., Gd2ZnMnO6/ZnO nanocomposites: green sol–gel auto-combustion synthesis, characterization and photocatalytic degradation of different dye pollutants in water. J. Alloys Compd. 835, 155240 (2020)

    CAS  Google Scholar 

  11. M. Salavati-Niasari, Ship-in-a-bottle synthesis, characterization and catalytic oxidation of styrene by host (nanopores of zeolite-Y)/guest ([bis (2-hydroxyanil) acetylacetonato manganese (III)]) nanocomposite materials (HGNM). Microporous Mesoporous Mater. 95(1-3), 248–256 (2006)

    CAS  Google Scholar 

  12. T. Wágner et al., The study of photo-and thermally-induced diffusion and dissolution of Ag in As30S70 amorphous films and its reaction products. J. Non-Cryst. Solids 299, 1028–1032 (2002)

    Google Scholar 

  13. A.J. Sisi et al., Systematic activation of potassium peroxydisulfate with ZIF-8 via sono-assisted catalytic process: mechanism and ecotoxicological analysis. J. Mol. Liq. 308, 113018 (2020)

    Google Scholar 

  14. M. Salavati-Niasari, Nanoscale microreactor-encapsulation of 18-membered decaaza macrocycle nickel (II) complexes. Inorg. Chem. Commun. 8(2), 174–177 (2005)

    CAS  Google Scholar 

  15. M. Ghasemi et al., In-situ electro-generation and activation of hydrogen peroxide using a CuFeNLDH-CNTs modified graphite cathode for degradation of cefazolin. J. Environ. Manag. 267, 110629 (2020)

    CAS  Google Scholar 

  16. M. Sabet, M. Salavati-Niasari, O. Amiri, Using different chemical methods for deposition of CdS on TiO2 surface and investigation of their influences on the dye-sensitized solar cell performance. Electrochim. Acta 117, 504–520 (2014)

    CAS  Google Scholar 

  17. N. Hossain et al., Structural and physical properties of NbO2 and Nb2O5 thin films prepared by magnetron sputtering. J. Mater. Sci.: Mater. Electron. 30(10), 9822–9835 (2019)

    CAS  Google Scholar 

  18. Y. Orooji et al., Facile fabrication of silver iodide/graphitic carbon nitride nanocomposites by notable photo-catalytic performance through sunlight and antimicrobial activity. J. Hazard. Mater. 389, 122079 (2020)

    CAS  Google Scholar 

  19. E. Esmaeili et al., Modified single-phase hematite nanoparticles via a facile approach for large-scale synthesis. Chem. Eng. J. 170(1), 278–285 (2011)

    CAS  Google Scholar 

  20. Y. Orooji et al., Co-reinforcing of mullite-TiN-CNT composites with ZrB2 and TiB2 compounds. Ceram. Int. 45(16), 20844–20854 (2019)

    CAS  Google Scholar 

  21. D.A.H. Hanaor et al., Solution based synthesis of mixed-phase materials in the Li2TiO3–Li4SiO4 system. J. Nucl. Mater. 456, 151–161 (2015)

    CAS  Google Scholar 

  22. M. Xiang et al., Preparation of Li2TiO3–Li4SiO4 core–shell ceramic pebbles with enhanced crush load by graphite bed process. J. Nucl. Mater. 466, 477–483 (2015)

    CAS  Google Scholar 

  23. T. Hoshino et al., Development of advanced tritium breeding material with added lithium for ITER-TBM. J. Nucl. Mater. 417(1–3), 684–687 (2011)

    CAS  Google Scholar 

  24. H. Kashimura et al., Mass loss of Li2TiO3 pebbles and Li4SiO4 pebbles. Fusion Eng. Des. 88(9-10), 2202–2205 (2013)

    CAS  Google Scholar 

  25. J. Han et al., Fabrication of a Li4SiO4–Pb tritium breeding material. Fusion Eng. Des. 89(12), 3046–3053 (2014)

    CAS  Google Scholar 

  26. W. Zhang et al., Fabrication of Li2TiO3 pebbles with small grain size via hydrothermal and improved dry-rolling methods. J. Nucl. Mater. 464, 389–393 (2015)

    CAS  Google Scholar 

  27. V. Correcher, M. Gonzalez, Preliminary results on the relationship between luminescence and crystalline structure of lithium metatitanate. Nucl. Instrum. Methods Phys. Res. B 326, 86–89 (2014)

    CAS  Google Scholar 

  28. E. Carella, T. Hernández, The effect of γ-radiation in Li4SiO4 ceramic breeder blankets. Fusion Eng. Des. 90, 73–78 (2015)

    CAS  Google Scholar 

  29. S.T. Murphy, Tritium solubility in Li2TiO3 from first-principles simulations. J. Phys. Chem. C 118(51), 29525–29532 (2014)

    CAS  Google Scholar 

  30. Y. Zeng et al., Fast fabrication of high quality Li2TiO3–Li4SiO4 biphasic ceramic pebbles by microwave sintering: in comparison with conventional sintering. Ceram. Int. 45(15), 19022–19026 (2019)

    CAS  Google Scholar 

  31. H. Guo et al., Low-cost fabrication of Li2TiO3 tritium breeding ceramic pebbles via low-temperature solid-state precursor method. Ceram. Int. 45(14), 17114–17119 (2019)

    CAS  Google Scholar 

  32. H. Wang et al., An innovative process for synthesis of superfine nanostructured Li2TiO3 tritium breeder ceramic pebbles via TBOT hydrolysis–solvothermal method. Ceram. Int. 45(5), 5189–5194 (2019)

    CAS  Google Scholar 

  33. S. Gu et al., The effects of irradiation and high temperature on chemical states in Li2TiO3. Int. J. Hydrogen Energy 44(60), 32151–32157 (2019)

    CAS  Google Scholar 

  34. E. Carella, M. González, 3He behaviour in Li2TiO3 ceramics for fusion breeding blanket applications. Energy Procedia 41, 26–33 (2013)

    CAS  Google Scholar 

  35. E. Carella, M. Gonzalez, R. Gonzalez-Arrabal, D-depth profiling in as-implanted and annealed Li-based breeder blanket ceramics. J. Nucl. Mater. 438(1-3), 193–198 (2013)

    CAS  Google Scholar 

  36. E. Carella et al., Nuclear reaction analysis as a tool for the 3He thermal evolution in Li2TiO3 ceramics. Nucl. Instrum. Methods Phys. Res. B 332, 85–89 (2014)

    CAS  Google Scholar 

  37. Q. Zhou et al., Release kinetics of tritium generation in neutron irradiated biphasic Li2TiO3–Li4SiO4 ceramic breeder. J. Nucl. Mater. 522, 286–293 (2019)

    CAS  Google Scholar 

  38. Y. Chikhray et al., Measurement system for in-pile tritium monitoring from Li2TiO3 ceramics at WWRK reactor. J. Nucl. Mater. 367, 1028–1032 (2007)

    Google Scholar 

  39. J. Wang et al., The influences of deuterium irradiation defects on mechanical properties for ceramic breeder material Li2TiO3. Fusion Eng. Des. 121, 182–187 (2017)

    CAS  Google Scholar 

  40. C. Alvani, S. Casadio, Kinetics of tritium release from irradiated Li2TiO3 pebbles in out-of-pile TPD tests. Fusion Eng. Des. 69(1–4), 275–280 (2003)

    CAS  Google Scholar 

  41. T. Nakazawa et al., High energy heavy ion induced structural disorder in Li2TiO3. J. Nucl. Mater. 367, 1398–1403 (2007)

    Google Scholar 

  42. M.V. Zdorovets, A.S. Kurlov, A.L. Kozlovskiy, Radiation defects upon irradiation with Kr14+ ions of TaC0. 81 ceramics. Surf. Coat. Technol. 386, 125499 (2020)

    CAS  Google Scholar 

  43. S.B. Kislitsin et al., Degradation processes and helium swelling in beryllium oxide. Surf. Coat. Technol. 386, 125498 (2020)

    CAS  Google Scholar 

  44. M.V. Zdorovets, A.L. Kozlovskiy, Study of the stability of the structural properties of CeO2 microparticles to helium irradiation. Surf. Coat. Technol. 383, 125286 (2020)

    Google Scholar 

  45. S.J. Zinkle, Microstructure of ion irradiated ceramic insulators. Nucl. Instrum. Methods Phys. Res. B 91(1-4), 234–246 (1994)

    CAS  Google Scholar 

  46. S.J. Zinkle, Effect of H and He irradiation on cavity formation and blistering in ceramics. Nucl. Instrum. Methods Phys. Res. B 286, 4–19 (2012)

    CAS  Google Scholar 

  47. M. Obradović et al., Effects of helium ion irradiation on bubble formation in AlN/TiN multilayered system. Thin Solid Films 591, 164–168 (2015)

    Google Scholar 

  48. A. Kozlovskiy et al., Influence of He-ion irradiation of ceramic AlN. Vacuum 163, 45–51 (2019)

    CAS  Google Scholar 

  49. Q. Hu et al., Aggregation of radiation defects in AIN ceramics under He+ ion irradiation. Radiat. Eff. Defects Solids 152(3), 247–253 (2000)

    CAS  Google Scholar 

  50. J.P. Ziegler, M.D. Ziegler, J.P. Biersack, The program stopping and Range of Ion in Matter (SRIM) 2013 Pro. (2018)

  51. D. Nikolopoulos et al., Study of the response of open CR-39 detector to radon and progeny by Monte Carlo simulation with SRIM 2013. International Scientific Conference eRA-8 ISSN-1791-1133-1. 2013

Download references

Funding

This study was funded by the Ministry of Education and Science of the Republic of Kazakhstan (Grant BR05235921).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Kozlovskiy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shlimas, D.I., Zdorovets, M.V. & Kozlovskiy, A.L. Synthesis and resistance to helium swelling of Li2TiO3 ceramics. J Mater Sci: Mater Electron 31, 12903–12912 (2020). https://doi.org/10.1007/s10854-020-03843-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03843-4

Navigation