Skip to main content
Log in

Synthesis of novel Fe3O4@SiO2@Er2TiO5 superparamagnetic core–shell and evaluation of their photocatalytic capacity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Rare earth oxides Er2TiO5 photocatalysts supported on superparamagnetic Fe3O4@SiO2 core–shell nanostructures were prepared through a sol–gel method. The achieved magnetic nanostructures were characterized by a number of procedures such as XRD, FE-SEM, TEM, UV–Vis DRS, VSM and PL spectroscopy and then the activity of the magnetic nanostructures as a photocatalysts for the UV–Vis induced degradation of methyl orange was evaluated. The activity of Fe3O4@SiO2@Er2TiO5 were tested as photodegradation catalysts for removing methyl orange. Moreover, the effect of incorporating different amounts of erbium oxides in the photocatalysts was studied and it was found that the optimal amount of erbium oxide in terms of reaching the highest photocatalytic activity was 25 wt%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. I. Prabha, S. Lathasree, Photodegradation of phenol by zinc oxide, titania and zinc oxide–titania composites: nanoparticle synthesis, characterization and comparative photocatalytic efficiencies. Mater. Sci. Semicond. Process. 26, 603–613 (2014)

    CAS  Google Scholar 

  2. Kommineni, S., et al. 3.0 Advanced oxidation processes. center for groundwater restoration and protection national water research institute, (2000)

  3. M. Rahimi-Nasrabadi et al., Preparation of Co2TiO4/CoTiO3/Polyaniline ternary nano-hybrids for enhanced destruction of agriculture poison and organic dyes under visible-light irradiation. J. Mater. Sci. Mater. Electron. 30, 1–15 (2019)

    Google Scholar 

  4. S.M. Peymani-Motlagh et al., Assessing the magnetic, cytotoxic and photocatalytic influence of incorporating Yb3+ or Pr3+ ions in cobalt–nickel ferrite. J. Mater. Sci. Mater. Electron. 30(7), 6902–6909 (2019)

    CAS  Google Scholar 

  5. A. Sobhani-Nasab et al., Preparation, characterization and investigation of sonophotocatalytic activity of thulium titanate/polyaniline nanocomposites in degradation of dyes. Ultrason. Sonochem. 50, 46–58 (2019)

    CAS  Google Scholar 

  6. A. Sobhani-Nasab et al., New method for synthesis of BaFe12O19/Sm2Ti2O7 and BaFe12O19/Sm2Ti2O7/Ag nano-hybrid and investigation of optical and photocatalytic properties. J. Mater. Sci. Mater. Electron. 30(6), 5854–5865 (2019)

    CAS  Google Scholar 

  7. H. Kooshki et al., Eco-friendly synthesis of PbTiO3 nanoparticles and PbTiO3/carbon quantum dots binary nano-hybrids for enhanced photocatalytic performance under visible light. Sep. Purif. Technol. 211, 873–881 (2019)

    CAS  Google Scholar 

  8. F. Sedighi et al., Synthesis and characterization of CuWO4 nanoparticle and CuWO4/NiO nanocomposite using co-precipitation method; application in photodegradation of organic dye in water. J. Mater. Sci. Mater. Electron. 29(16), 13737–13745 (2018)

    CAS  Google Scholar 

  9. M. Eghbali-Arani et al., Green synthesis and characterization of SmVO4 nanoparticles in the presence of carbohydrates as capping agents with investigation of visible-light photocatalytic properties. J. Electron. Mater. 47(7), 3757–3769 (2018)

    CAS  Google Scholar 

  10. A. Sobhani-Nasab et al., Synthesis and characterization of MnWO4/TmVO4 ternary nano-hybrids by an ultrasonic method for enhanced photocatalytic activity in the degradation of organic dyes. Mater. Lett. 238, 159–162 (2019)

    CAS  Google Scholar 

  11. A. Mishra et al., Graphitic carbon nitride (g–C3N4)–based metal-free photocatalysts for water splitting: a review. Carbon 149, 693 (2019)

    CAS  Google Scholar 

  12. C.V. Reddy et al., Mn-doped ZrO2 nanoparticles prepared by a template-free method for electrochemical energy storage and abatement of dye degradation. Ceram. Int. 45(12), 15298–15306 (2019)

    CAS  Google Scholar 

  13. M.A. Marsooli et al., Preparation of Fe3O4/SiO2/TiO2/PrVO4 nanocomposite in various molar ratios: investigation on photocatalytic performance on organic contaminate and bacterial environments, and anti-cancer properties. Polyhedron 176, 114239 (2020)

    Google Scholar 

  14. S. Behvandi et al., Synthesis and characterization of Sm2(MoO4)3, Sm2(MoO4)3/GO and Sm2 (MoO4)3/C3N4 nanostructures for improved photocatalytic performance and their anti-cancer the MCF-7 cells. Polyhedron 180, 114424 (2020)

    CAS  Google Scholar 

  15. M.A. Marsooli et al., Preparation of Fe3O4/SiO2/TiO2/CeVO4 nanocomposites: investigation of photocatalytic effects on organic pollutants, bacterial environments, and new potential therapeutic candidate against cancer cells. Front. Pharmacol. 11, 192 (2020)

    Google Scholar 

  16. M. Eghbali-Arani et al., Optimization and detailed stability study on coupling of CdMoO4 into BaWO4 for enhanced photodegradation and removal of organic contaminant. Arab. J. Chem. 13, 2425 (2018)

    Google Scholar 

  17. F. Gandomi et al., Simple synthesis and characterization of Li0.5Fe2.5O4, LiMg0.5Fe2O4 and LiNi0.5Fe2O4, and investigation of their photocatalytic and anticancer properties on hela cells line. J. Mater. Sci. Mater. Electron. 30(22), 19691–19702 (2019)

    CAS  Google Scholar 

  18. S.M. Peymani-Motlagh et al., Effect of Gd3+-, Pr3+-or Sm3+-substituted cobalt–zinc ferrite on photodegradation of methyl orange and cytotoxicity tests. J. Rare Earths 37(12), 1288–1295 (2019)

    Google Scholar 

  19. M. Rahimi-Nasrabadi et al., Preparation of Co2TiO4/CoTiO3/Polyaniline ternary nano-hybrids for enhanced destruction of agriculture poison and organic dyes under visible-light irradiation. J. Mater. Sci. Mater. Electron. 30(17), 15854–15868 (2019)

    CAS  Google Scholar 

  20. A. Sobhani-Nasab et al., Synergetic effect of graphene oxide and C3N4 as co-catalyst for enhanced photocatalytic performance of dyes on Yb2 (MoO4) 3/YbMoO4 nanocomposite. Ceram. Int. 45(14), 17847–17858 (2019)

    CAS  Google Scholar 

  21. M.A. Marsooli et al., Preparation and characterization of magnetic Fe3O4/CdWO4 and Fe3O4/CdWO4/PrVO4 nanoparticles and investigation of their photocatalytic and anticancer properties on PANC1 cells. Materials 12(19), 3274 (2019)

    CAS  Google Scholar 

  22. P.S. Basavarajappa et al., Enhanced photocatalytic activity and biosensing of gadolinium substituted BiFeO3 nanoparticles. ChemistrySelect 3(31), 9025–9033 (2018)

    CAS  Google Scholar 

  23. A. Hamza et al., Solar photocatalytic degradation of phenol using nanosized ZnO and-Fe2O3. J. Chem. Eng. Mater. Sci. 4(7), 87–92 (2013)

    CAS  Google Scholar 

  24. M. Rahimi-Nasrabadi et al., Optimizing the procedure for the synthesis of nanoscale gadolinium (III) tungstate as efficient photocatalyst. J. Mater. Sci. Mater. Electron. 28(4), 3780–3788 (2017)

    CAS  Google Scholar 

  25. M. Rahimi-Nasrabadi et al., Samarium carbonate and samarium oxide; synthesis, characterization and evaluation of the photo-catalytic behavior. J. Mater. Sci. Mater. Electron. 28(7), 5574–5583 (2017)

    CAS  Google Scholar 

  26. M. Rahimi-Nasrabadi et al., Synthesis of nano-structured lanthanum tungstates photocatalysts. J. Mater. Sci. Mater. Electron. 28(11), 7600–7608 (2017)

    CAS  Google Scholar 

  27. M. Rahimi-Nasrabadi et al., Fabrication, characterization and photochemical activity of ytterbium carbonate and ytterbium oxide nanoparticles. J. Mater. Sci. Mater. Electron. 28(13), 9478–9488 (2017)

    CAS  Google Scholar 

  28. S. Jessl et al., Honeycomb-shaped carbon nanotube supports for BiVO4 based solar water splitting. Nanoscale 11(47), 22964–22970 (2019)

    CAS  Google Scholar 

  29. V.N. Rao et al., Photocatalytic recovery of H2 from H2S containing wastewater: surface and interface control of photo-excitons in Cu2S@ TiO2 core-shell nanostructures. Appl. Catal. B 254, 174–185 (2019)

    Google Scholar 

  30. C.V. Reddy et al., Template-free synthesis of tetragonal Co-doped ZrO2 nanoparticles for applications in electrochemical energy storage and water treatment. Electrochim. Acta 317, 416–426 (2019)

    CAS  Google Scholar 

  31. K.R. Reddy et al., Polymeric graphitic carbon nitride (g-C3N4)-based semiconducting nanostructured materials: synthesis methods, properties and photocatalytic applications. J. Environ. Manage. 238, 25–40 (2019)

    CAS  Google Scholar 

  32. M. Panigati et al., Luminescent dinuclear rhenium (I) complexes containing bridging 1, 2-diazine ligands: photophysical properties and application. Coord. Chem. Rev. 256(15–16), 1621–1643 (2012)

    CAS  Google Scholar 

  33. M. Rahimi-Nasrabadi, F. Ahmadi, M. Eghbali-Arani, Simple morphology-controlled fabrication of CdTiO3 nanoparticles with the aid of different capping agents. J. Mater. Sci. Mater. Electron. 27(12), 13294–13299 (2016)

    CAS  Google Scholar 

  34. M. Rahimi-Nasrabadi, F. Ahmadi, M. Eghbali-Arani, Different morphologies fabrication of NiAl2O4 nanostructures with the aid of new template and its photocatalyst application. J. Mater. Sci. Mater. Electron. 28(3), 2415–2420 (2017)

    CAS  Google Scholar 

  35. N. Lakshminarasimhan, A.D. Bokare, W. Choi, Effect of agglomerated state in mesoporous TiO2 on the morphology of photodeposited Pt and photocatalytic activity. J. Phys. Chem. C 116(33), 17531–17539 (2012)

    CAS  Google Scholar 

  36. S.P. Dharupaneedi et al., Membrane-based separation of potential emerging pollutants. Sep. Purif. Technol. 210, 850–866 (2019)

    CAS  Google Scholar 

  37. K.R. Reddy, V.G. Gomes, M. Hassan, Carbon functionalized TiO2 nanofibers for high efficiency photocatalysis. Mater. Res. Express 1(1), 015012 (2014)

    Google Scholar 

  38. K.R. Reddy, M. Hassan, V.G. Gomes, Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis. Appl. Catal. A 489, 1–16 (2015)

    CAS  Google Scholar 

  39. K.R. Reddy et al., Nanofibrous TiO2-core/conjugated polymer-sheath composites: synthesis, structural properties and photocatalytic activity. J. Nanosci. Nanotechnol. 10(12), 7951–7957 (2010)

    CAS  Google Scholar 

  40. M. Rahimi-Nasrabadi et al., Statistically optimized synthesis of dyspersium tungstate nanoparticles as photocatalyst. J. Mater. Sci. Mater. Electron. 27(12), 12860–12868 (2016)

    CAS  Google Scholar 

  41. M. Rahimi-Nasrabadi et al., Preparation of dysprosium carbonate and dysprosium oxide efficient photocatalyst nanoparticles through direct carbonation and precursor thermal decomposition. J. Mater. Sci. Mater. Electron. 28(4), 3325–3336 (2017)

    CAS  Google Scholar 

  42. T. Tavangar et al., Textile waste, dyes/inorganic salts separation of cerium oxide-loaded loose nanofiltration polyethersulfone membranes. Chem. Eng. J. 385, 123787 (2020)

    Google Scholar 

  43. M. Rostami et al., Facile synthesis and characterization of TiO2–graphene–ZnFe2–xTbxO4 ternary nano-hybrids. J. Mater. Sci. 52(12), 7008–7016 (2017)

    CAS  Google Scholar 

  44. M. Rahimi-Nasrabadi et al., Assessment of supercapacitive performance of europium tungstate nanoparticles prepared via hydrothermal method. J. Mater. Sci. Mater. Electron. 28(17), 12391–12398 (2017)

    CAS  Google Scholar 

  45. M. Rahimi-Nasrabadi, F. Ahmadi, A. Fosooni, Influence of capping agents additives on morphology of CeVO4 nanoparticles and study of their photocatalytic properties. J. Mater. Sci. Mater. Electron. 28(1), 537–542 (2017)

    CAS  Google Scholar 

  46. M. Rahimi-Nasrabadi et al., ZnFe2–xLaxO4 nanostructure: synthesis, characterization, and its magnetic properties. J. Mater. Sci. Mater. Electron. 26(12), 9776–9781 (2015)

    CAS  Google Scholar 

  47. M. Rahimi-Nasrabadi et al., Synthesis and characterization of ZnFe2−xYbxO4–graphene nanocomposites by sol–gel method. J. Mater. Sci. Mater. Electron. 27(11), 11940–11945 (2016)

    CAS  Google Scholar 

  48. D.K. Kim et al., Starch-coated superparamagnetic nanoparticles as MR contrast agents. Chem. Mater. 15(23), 4343–4351 (2003)

    CAS  Google Scholar 

  49. Y. Kobayashi et al., Preparation and properties of silica-coated cobalt nanoparticles. J. Phys. Chem. B 107(30), 7420–7425 (2003)

    CAS  Google Scholar 

  50. Z. Liu et al., Synthesis and magnetic properties of Fe3O4 nanoparticles. J. Mater. Synth. Process. 10(2), 83–87 (2002)

    CAS  Google Scholar 

  51. Z. Liu et al., Synthesis and characterization of ultrafine well-dispersed magnetic nanoparticles. J. Magn. Magn. Mater. 283(2–3), 258–262 (2004)

    CAS  Google Scholar 

  52. Z. Liu et al., Synthesis of magnetite nanoparticles in W/O microemulsion. J. Mater. Sci. 39(7), 2633–2636 (2004)

    CAS  Google Scholar 

  53. M. Mikhaylova et al., Superparamagnetism of magnetite nanoparticles: dependence on surface modification. Langmuir 20(6), 2472–2477 (2004)

    CAS  Google Scholar 

  54. L. Casas et al., Silica aerogel–iron oxide nanocomposites: structural and magnetic properties. J. Non-Cryst. Solids 285(1–3), 37–43 (2001)

    CAS  Google Scholar 

  55. A. Corrias et al., X-ray absorption spectroscopy study of FeCo− SiO2 nanocomposites prepared by the sol− gel method. J. Phys. Chem. B 107(13), 3030–3039 (2003)

    CAS  Google Scholar 

  56. M. Ohmori, E. Matijević, Preparation and properties of uniform coated inorganic colloidal particles: 8. Silica on iron. J. Colloid Interface Sci. 160(2), 288–292 (1993)

    CAS  Google Scholar 

  57. R. Massart, Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 17(2), 1247–1248 (1981)

    Google Scholar 

  58. S.H. Hosseini, A. Asadnia, Synthesis, characterization, and microwave-absorbing properties of polypyrrole/MnFe2O4 nanocomposite. J. Nanomater. 2012, 3 (2012)

    Google Scholar 

  59. Z. Ding, G. Lu, P. Greenfield, Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water. J. Phys. Chem. B 104(19), 4815–4820 (2000)

    CAS  Google Scholar 

  60. Y. Yu et al., Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Appl. Catal. A 289(2), 186–196 (2005)

    CAS  Google Scholar 

  61. C. Dette et al., TiO2 anatase with a bandgap in the visible region. Nano Lett. 14(11), 6533–6538 (2014)

    CAS  Google Scholar 

  62. S.K. Movahed, N.F. Lehi, M. Dabiri, Palladium nanoparticles supported on core-shell and yolk-shell Fe3O4@ nitrogen doped carbon cubes as a highly efficient, magnetically separable catalyst for the reduction of nitroarenes and the oxidation of alcohols. J. Catal. 364, 69–79 (2018)

    CAS  Google Scholar 

  63. L.G. Devi et al., Photo degradation of methyl orange an azo dye by advanced fenton process using zero valent metallic iron: influence of various reaction parameters and its degradation mechanism. J. Hazard. Mater. 164(2–3), 459–467 (2009)

    Google Scholar 

  64. P. Liang et al., Photocatalysis of C, N-doped ZnO derived from ZIF-8 for dye degradation and water oxidation. RSC Adv. 6(98), 95903–95909 (2016)

    CAS  Google Scholar 

  65. Y. Li et al., Efficient decomposition of organic compounds and reaction mechanism with BiOI photocatalyst under visible light irradiation. J. Mol. Catal. A 334(1–2), 116–122 (2011)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the National Institute for Medical Research Development (NIMAD) for their support (Grant No. 971032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Rahimi-Nasrabadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gandomi, F., Sobhani-Nasab, A., Pourmasoud, S. et al. Synthesis of novel Fe3O4@SiO2@Er2TiO5 superparamagnetic core–shell and evaluation of their photocatalytic capacity. J Mater Sci: Mater Electron 31, 10553–10563 (2020). https://doi.org/10.1007/s10854-020-03604-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03604-3

Navigation