Skip to main content
Log in

Enhancing optical properties of Lu3Al5O12:Ce3+ by cost-effective silica-based photonic crystals

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Light-induced interactions between a commercially available green phosphor; Lu3Al5O12:Ce3+ (LuAG:Ce3+); and silica photonic crystals (PC) have been investigated in terms of absorption, excitation- and emission-based properties, respectively. The composites were prepared by embedding the phosphorus and other additives homogeneously in a polymethyl methacrylate (PMMA) matrix in form of thin films. When entrapped in the polymer, the additive-free LuAG:Ce3+ exhibited two efficient absorption bands centered at 346 and 450 nm, respectively. A broadband emission at 538 nm and a Stoke’s Shift of 88 nm were observed when excited by blue light; at 450 nm. When the Ce-free and Ce-doped photonic crystals were utilized along with the LuAG:Ce3+, the emission intensities of the composites were enhanced at 19- and 18-fold with respect to the PC-free forms. Additionally, average decay times of the individual phosphor and silica-modified phosphor composites were measured as 64, 550, 772, and 830 µs, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z.G. Xia, A. Meijerink, Chem. Soc. Rev. 46, 275 (2017)

    CAS  Google Scholar 

  2. H.T. Kim, J.H. Kim, J.K. Lee, Y.C. Kang, Mater. Res. Bull. 47, 1428 (2012)

    CAS  Google Scholar 

  3. J.M. Ogieglo, A. Zych, K.V. Ivanovskikh, T. Justel, C.R. Ronda, A. Meijerink, J. Phys. Chem. A 116, 8464 (2012)

    CAS  Google Scholar 

  4. P. Dorenbos, J. Lumin. 99, 283 (2002)

    CAS  Google Scholar 

  5. X.R. Liu, X.O. Wang, W.F. Shun, Phys. Status. Solidi. A 101, 161 (1987)

    Google Scholar 

  6. D. Mateika, E. Volkel, J. Haisma, J. Cryst. Growth. 102, 994 (1990)

    CAS  Google Scholar 

  7. J.L. Wu, G. Gundiah, A.K. Cheetham, Chem. Phys. Lett. 441, 250 (2007)

    CAS  Google Scholar 

  8. J.M. Ogieglo, A. Zych, T. Justel, A. Meijerink, C.R. Ronda, Opt. Mater. 35, 322 (2013)

    CAS  Google Scholar 

  9. C.W.E. van Eijk, Phys. Med. Biol., 47 (2002)

  10. A.G. Petrosyan, K.L. Ovanesyan, R.V. Sargsyan et al., J. Cryst. Growth 312, 3136 (2010)

    CAS  Google Scholar 

  11. M. Nikl, A. Vedda, M. Fasoli, et al., Phys. Rev. B, 76 (2007)

  12. A. Yoshikawa, K. Kamada, F. Saito et al., IEEE Trans. Nucl. Sci. 55, 1372 (2008)

    CAS  Google Scholar 

  13. W. Drozdowski, P. Dorenbos, R. Drozdowska et al., IEEE Trans. Nucl. Sci. 56, 320 (2009)

    CAS  Google Scholar 

  14. F. Rahman, A.F. George, Leukos (2020)

  15. L.X. Zhang, B. Deng, S. Shu, Y. Wang, H.L. Geng, R.J. Yu, Spectrochim. Acta A, 224 (2020)

  16. A. Mcheik, S. Cassaignon, J. Livage, A. Gibaud, S. Berthier, P.J. Lopez, Front. Mar. Sci. 5, 123 (2018)

    Google Scholar 

  17. J. Yu, J.Y. Lei, L.Z. Wang, J.L. Zhang, Y.D. Liu, J. Alloy. Compd. 769, 740 (2018)

    CAS  Google Scholar 

  18. S. John, Phys. Rev. Lett. 58, 2486 (1987)

    CAS  Google Scholar 

  19. E. Yablonovitch, J. Opt. Soc. Am. B 10, 283 (1993)

    CAS  Google Scholar 

  20. R. Dalmis, N.F.A. Azem, I. Birlik, E. Çelik, Appl. Surf. Sci. 475, 94 (2019)

    CAS  Google Scholar 

  21. R. Dalmis, O.Y. Keskin, N.F.A. Azem, I. Birlik, Ceram. Int. 45, 17 (2019)

    Google Scholar 

  22. O.Y. Keskin, R. Dalmis, I. Birlik, N.F.A. Azem, J. Alloy. Compd. 817 (2020)

  23. E.W. Seelig, B. Tang, A. Yamilov, H. Cao, R.P.H. Chang, Mater. Chem. Phys. 80, 257 (2003)

    CAS  Google Scholar 

  24. G.I.N. Waterhouse, M.R. Waterland, Polyhedron 26, 356 (2007)

    CAS  Google Scholar 

  25. M. Curti, C.B. Mendive, M.A. Grela, D.W. Bahnemann, Mater. Res. Bull. 91, 155 (2017)

    CAS  Google Scholar 

  26. I. Bulu, H. Caglayan, E. Ozbay, Phys. Rev. B 72 (2005)

  27. H. Kosaka, T. Kawashima, A. Tomita, J. Lightwave Technol. 17, 2032 (1999)

    Google Scholar 

  28. P. Li, S.L. Chen, A.J. Wang, Y. Wang, Chem. Eng. J. 284, 305 (2016)

    CAS  Google Scholar 

  29. D. Hippo, K. Urakawa, Y. Tsuchiya, H. Mizuta, N. Koshida, S. Oda, Mater. Chem. Phys. 116, 107 (2009)

    CAS  Google Scholar 

  30. L. Burratti, F. De Matteis, M. Casalboni, R. Francini, R. Pizzoferrato, P. Prosposito, Mater. Chem. Phys. 212, 274 (2018)

    CAS  Google Scholar 

  31. E. Armstrong, C. O'Dwyer, J. Mater. Chem. C 3, 6109 (2015)

    CAS  Google Scholar 

  32. B.B. Gao, Z.Z. He, B.F. He, Z.Z. Gu, Sensor Actuat. B Chem. 288, 734 (2019)

    CAS  Google Scholar 

  33. R.W.J. Scott, S.M. Yang, G. Chabanis, N. Coombs, D.E. Williams, G.A. Ozin, Adv. Mater. 13, 19 (2001)

    Google Scholar 

  34. C.Y. Kuo, S.Y. Lu, S. Chen, M. Bernards, S. Jiang, Sensor Actuat. B-Chem. 124, 452 (2007)

    CAS  Google Scholar 

  35. C.W. Kuo, J.Y. Shiu, K.H. Wei, P. Chen, J. Chromatogr. A 1162, 175 (2007)

    CAS  Google Scholar 

  36. M.M. Ren, R. Ravikrishna, K.T. Valsaraj, Environ. Sci. Technol. 40, 7029 (2006)

    CAS  Google Scholar 

  37. L.I. Halaoui, N.M. Abrams, T.E. Mallouk, J. Phys. Chem. B 109, 6334 (2005)

    CAS  Google Scholar 

  38. C.L. Huisman, J. Schoonman, A. Goossens, Sol. Energ. Mat. Sol. C 85, 115 (2005)

    CAS  Google Scholar 

  39. I.B. Burgess, L. Mishchenko, B.D. Hatton, M. Kolle, M. Loncar, J. Aizenberg, J. Am. Chem. Soc. 134, 1374 (2012)

    CAS  Google Scholar 

  40. H.L. Li, L.X. Chang, J.X. Wang, L.M. Yang, Y.L. Song, J. Mater. Chem. 18, 5098 (2008)

    CAS  Google Scholar 

  41. C. Fenzl, T. Hirsch, O.S. Wolfbeis, Angew. Chem Int. Edit. 53, 3318 (2014)

    CAS  Google Scholar 

  42. Y.N. Zhang, Y. Zhao, Q. Wang, Sensor Actuat. B-Chem. 209, 431 (2015)

    CAS  Google Scholar 

  43. L.X. Kong, Q.L. Dai, C. Miao, L. Xu, H.W. Song, J. Colloid. Interf. Sci. 450, 196 (2015)

    CAS  Google Scholar 

  44. Y.Y. Zhang, L.L. Wang, X.M. Ma et al., Appl. Surf. Sci. 435, 799 (2018)

    CAS  Google Scholar 

  45. Y.S. Zhu, S.B. Cui, Y.H. Wang, M. Liu, C. Lu, A. Mishra, W. Xu, Nanotechnology 27, 40 (2016)

    Google Scholar 

  46. Z.W. Yang, J. Zhou, X.G. Huang et al., Chem. Phys. Lett. 455, 55 (2008)

    CAS  Google Scholar 

  47. Z.Y. Liu, C. Li, B.H. Yu, Y.H. Wang, H.B. Niu, J. Disp. Technol. 8, 329 (2012)

    CAS  Google Scholar 

  48. F.T.C. Ma, J. Chen, R. Ma, X. Yuan, Z. Wen, J. Long, J. Li, M. Du, J. Zhang, Y. Cao, J. Eur. Ceram. Soc. 36, 4205 (2016)

    CAS  Google Scholar 

  49. S.E. Kichanov, G.P. Shevchenko, E.V. Tretyak, D.P. Kozlenko, G.E. Malashkevich, A.V. Belushkin, B.N. Savenko, J. Alloy. Compd. 613, 238 (2014)

    CAS  Google Scholar 

  50. B. Singh, V. Jain, A.H.B. Gomez, J. Terry, M.R. Linford, Appl. Surf. Sci. 387, 155 (2016)

    CAS  Google Scholar 

  51. O. Sublemontier, C. Nicolas, D. Aureau et al., J. Phys. Chem. Lett. 5, 3399 (2014)

    CAS  Google Scholar 

  52. Y. Jiang, Z. Jin, C. Chen et al., RSC. Adv. 7, 12856 (2017)

    CAS  Google Scholar 

  53. B. Yildirim, K. Ertekin, S. Demirci, S. Gultekin, Opt. Mater. 95 (2019)

  54. N. Niu, F. He, S.H. Huang, S.L. Gai, X. Zhang, P.P. Yang, RSC. Adv. 2, 10337 (2012)

    CAS  Google Scholar 

  55. S.A. Kumar, J. Senthilselvan, Mater. Chem. Phys. 233, 296 (2019)

    CAS  Google Scholar 

  56. R. Radnik, C. Mohr, P. Claus, Phys. Chem. Chem. Phys 5, 172 (2003)

    CAS  Google Scholar 

  57. R. Yew, S.K. Karuturi, J.Q. Liu, H.H. Tan, Y.C. Wu, C. Jagadish, Opt. Express. 27, 761 (2019)

    CAS  Google Scholar 

  58. A.C. Papageorgiou, N.S. Beglitis, C.L. Pang et al., P. Natl. Acad. Sci. USA 107, 2391 (2010)

    Google Scholar 

  59. J.N. Zhou, B.C. Li, Opt. Mater. Express 8, 775 (2018)

    CAS  Google Scholar 

  60. J.R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer Science & Business Media, New York, 1984)

    Google Scholar 

  61. S.J. Zhou, R. Tang, H. Li, L. Fu, B. Li, L.W. Yin, J. Power Sources, 439 (2019)

Download references

Acknowledgement

We gratefully acknowledge that funding of this project was provided by the “Scientific Research Funds of Dokuz Eylul University” (Project Number: 2017.KB.FEN.033) We also thank the Izmir Biomedicine and Genome Center (IBG) for the Electron Microscopy Core Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kadriye Ertekin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildirim, B., Dalmis, R., Ertekin, K. et al. Enhancing optical properties of Lu3Al5O12:Ce3+ by cost-effective silica-based photonic crystals. J Mater Sci: Mater Electron 31, 10267–10278 (2020). https://doi.org/10.1007/s10854-020-03573-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03573-7

Navigation