Skip to main content
Log in

Structural and electromagnetic studies of Mg1-xZnxFe2O4 nanoparticles synthesized via a sucrose autocombustion route

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Mg1−xZnxFe2O4 nanocrystalline ferrites (1.0 ≥ x ≥ 0.0) were prepared using a sucrose autocombustion-assisted route. X-ray diffraction (XRD) showed secondary phase formation at Zn contents higher than x = 0.2. The obvious increase in the lattice parameters from 8.3937 to 8.4454 Å upon increasing the Zn content might be attributed to the ionic radius of Zn2+ ions being larger than that of Mg2+ ions. The crystallite sizes calculated using Scherrer’s formula confirmed the nanocrystalline nature of the prepared samples. The Fourier-transform infrared (FTIR) spectra exhibited characteristic ferrite bands attributed to tetrahedral and octahedral sites, and there was an obvious splitting in the tetrahedral absorption band attributed to the Jahn–Teller distortion effect. Transmission electron microscopy (TEM) images showed agglomerated spherical particles with sizes that are in full agreement with results obtained by XRD. A reliable cation distribution was suggested based on the obtained structural parameters to address the preferential occupation of the entirety of the cations with increasing Zn content. The magnetic parameters estimated by vibrating sample magnetometer (VSM) measurements were utilized to confirm the suggested cation distribution and address the effect of Zn substitution on the entire system. All the investigated samples, except for ZnFe2O4, exhibited soft ferromagnetic characteristics. The obtained coercivities were higher than those reported in the literature and suggested the presence of an elevated demagnetization field and reflected the impact of the present synthesis method. The AC conductivity indicated semiconducting properties, and there was a ferromagnetic-to-paramagnetic magnetic transition in all samples with increasing temperature. The dielectric measurements also confirmed this transition by exhibiting relaxations in the same temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. Matz, D. Gotsch, R. Karmazin, R. Männer, B. Siessegger, Low temperature cofirable MnZn ferrite for power electronic applications. J. Electroceram. 22, 209–215 (2009)

    CAS  Google Scholar 

  2. M.R. Syue, F.J. Wei, C.S. Chou, C.M. Fu, Magnetic and electrical properties of Mn–Zn ferrites synthesized by combustion method without subsequent heat treatments. J. Appl. Phys. 109, 07A324 (2011)

    Google Scholar 

  3. X. Gao, L. Liu, B. Birajdar, M. Ziese, W. Lee, M. Alexe, D. Hesse, High-density periodically ordered magnetic cobalt ferrite nanodot arrays by template-assisted pulsed laser deposition. Adv. Funct. Mater. 19, 3450–3455 (2009)

    CAS  Google Scholar 

  4. S. Mohapatra, S.R. Rout, S. Maiti, T.K. Maiti, A.B. Panda, Monodisperse mesoporous cobalt ferrite nanoparticles: synthesis and application in targeted delivery of antitumor drugs. J. Mater. Chem. 21, 9185–9193 (2011)

    CAS  Google Scholar 

  5. C. Barcena, A.K. Sra, G.S. Chaubey, C. Khemtong, J.P. Liu, J. Gao, Zinc ferrite nanoparticles as MRI contrast agents. Chem. Commun. 19, 2224–2226 (2008)

    Google Scholar 

  6. A.B. Gadkari, T.J. Shinde, P.N. Vasambekar, Ferrite gas sensors. IEEE Sens. J. 11, 849–861 (2011)

    CAS  Google Scholar 

  7. J. Smith, H.P.J. Wijn, Ferrites (Wiley, New York, 1959)

    Google Scholar 

  8. A. Goldman, Modern Ferrite Technology, 2nd edn. (Springer, New York, 2006)

    Google Scholar 

  9. K. Nadeemn, S. Rahman, M. Mumtaz, Effect of annealing on properties of Mg doped Zn-ferrite nanoparticles. Progress Natl. Sci. 25, 111–116 (2015)

    Google Scholar 

  10. A. Manikandan, J. Judith Vijaya, M. Sundararajan, C. Meganathan, L. John Kennedy, M. Bououdina, Optical and magnetic properties of Mg-doped ZnFe2O4 nanoparticles prepared by rapid microwave combustion method. Superlattices Microstruct. 64, 118–131 (2013)

    CAS  Google Scholar 

  11. H. Kavas, A. Baykal, M.S. Toprak, Y. Kseoglua, M. Sertkol, B. Aktas, Cation distribution and magnetic properties of Zn doped NiFe2O4 nanoparticles synthesized by PEG-assisted hydrothermal route. J. Alloys Compd. 479, 49–55 (2009)

    CAS  Google Scholar 

  12. C. Yao, Q. Zeng, G.F. Goya, T. Torres, J. Liu, H. Wu, M. Ge, Y. Zeng, Y. Wang, J.Z. Jiang, ZnFe2O4 Nanocrystals: synthesis and magnetic properties. J. Phys. Chem. C 111, 12274–12278 (2007)

    CAS  Google Scholar 

  13. Y.Y. Meng, Z.W. Liu, H.C. Dai, H.Y. Yu, D.C. Zeng, S. Shukla, R.V. Ramanujan, Structure and magnetic properties of Mn(Zn)Fe2−xRExO4 ferrite nano-powders synthesized by co-precipitation and refluxing method. Powder Technol. 229, 270–275 (2012)

    CAS  Google Scholar 

  14. J. Hu, G. Shi, Z. Ni, L. Zheng, A. Chen, Effects of V2O5 addition on NiZn ferrite synthesized using two-step sintering process. Phyisca B 407, 2205–2210 (2012)

    CAS  Google Scholar 

  15. D.C. Bharti, K. Mukherjee, S.B. Majumder, Wet chemical synthesis and gas sensing properties of magnesium zinc ferrite nano-particles. Mater. Chem. Phys. 120, 509–517 (2010)

    CAS  Google Scholar 

  16. G.P. Nagabhushana, B. Rudraswamy, G.T. Chandrappa, Thermal effect on magnetic properties of Mg-Zn ferrite nanoparticles. Mater. Lett. 116, 227–230 (2014)

    Google Scholar 

  17. C. Choodamani, S. Hajarpour, A.H. Raouf, K. Gheisari, Structural evolution and magnetic properties of nanocrystalline magnesium–zinc soft ferrites synthesized by glycine–nitrate combustion process. J. Magn Magn. Mater. 363, 21–25 (2014)

    Google Scholar 

  18. K. Mukherjee, S.B. Majumder, Synthesis process induced improvement on the gas sensing characteristics of nano-crystalline magnesium zinc ferrite particles. Sens. Actuators B 162, 229–236 (2012)

    CAS  Google Scholar 

  19. C. Choodamani, G.P. Nagabhushana, S. Ashoka, B. Daruka Prasad, B. Rudraswamy, G.T. Chandrappa, Structural and magnetic studies of Mg(1–x)ZnxFe2O4 nanoparticles prepared by a solution combustion method. J. Alloys Compd. 578, 103–109 (2013)

    CAS  Google Scholar 

  20. S. Hajarpour, K. Gheisari, A.H. Raouf, Characterization of nanocrystalline Mg0.6Zn0.4Fe2O4 soft ferrites synthesized by glycine-nitrate combustion process. J. Magn. Magn. Mater. 329, 165–169 (2013)

    CAS  Google Scholar 

  21. P. Masina, T. Moyo, H.M.I. Abdallah, Synthesis, structural and magnetic properties of ZnxMg1-xFe2O4 nanoferrites. J. Magn. Magn. Mater. 381, 41–49 (2015)

    CAS  Google Scholar 

  22. S. Rahman, K. Nadeem, M. Anis-ur-Rehman, M. Mumtaz, S. Naeem, I. Letofsky-Papst, Structural and magnetic properties of ZnMg-ferrite nanoparticles prepared using the co-precipitation method. Ceram. Int. 39, 5235–5239 (2013)

    CAS  Google Scholar 

  23. R.G. Kulkarni, H.H. Joshi, The magnetic properties of the Mg-Znferrite system by Mossbauer spectroscopy. Sol. State Commun. 53, 1005–1008 (1985)

    CAS  Google Scholar 

  24. K.A. Mohammed, A.D. Al-Rawas, A.M. Gismelseed, A. Sellai, H.M. Widatallah, A. Yousif, M.E. Elzain, M. Shongwe, Infrared and structural studies of Mg1–xZnxFe2O4 ferrites. Phys. B 407, 795–804 (2012)

    CAS  Google Scholar 

  25. M.M. Haque, M. Huq, M.A. Hakim, Effect of Zn2+ substitution on the magnetic properties of Mg1-xZnxFe2O4 ferrites. Phys. B 404, 3915–3921 (2009)

    Google Scholar 

  26. D. Kotsikau, M. Ivanovskaya, V. Pankov, Y. Fedotova, Structure and magnetic properties of manganese zinc-ferrites prepared by spray pyrolysis method. Sol. State Sci. 39, 69–73 (2015)

    CAS  Google Scholar 

  27. K. Mukherjee, S.B. Majumder, Promising methane-sensing characteristics of hydrothermal synthesized magnesium zinc ferrite hollow spheres. Scrip. Mater. 67, 617–620 (2012)

    CAS  Google Scholar 

  28. H. Dutta, M. Sinha, Y.C. Lee, S.K. Pradhan, Microstructure characterization and phase transformation kinetics of ball-mill prepared nanocrystalline Mg–Zn-ferrite by Rietveld’s analysis and electron microscopy. Mater. Chem. Phys. 105, 31–37 (2007)

    CAS  Google Scholar 

  29. M.A. Gabal, A.A. Al-Al-Juaid, S.M. Al-Rashed, M.A. Hussein, Synthesis, characterization and electromagnetic properties of Zn-substituted CoFe2O4 via sucrose assisted combustion route. J. Magn. Magn. Mater. 426, 670–679 (2017)

    CAS  Google Scholar 

  30. S. Ghatak, M. Sinha, A.K. Meikap, S.K. Pradhan, Electrical transport behavior of nonstoichiometric magnesium–zinc ferrite. Mater. Res. Bull. 45, 954–960 (2010)

    CAS  Google Scholar 

  31. A. Xia, S. Liu, C. Jin, L. Chen, Y. Lv, Hydrothermal Mg1-xZnxFe2O4 spinel ferrites: phase formation and mechanism of saturation magnetization. Mater. Lett. 105, 199–201 (2013)

    CAS  Google Scholar 

  32. S. Raghuvanshi, F. Mazaleyrat, S.N. Kane, Mg1-xZnxFe2O4 nanoparticles: interplay between cation distribution and magnetic properties. AIP Adv. 8, 047804 (2018)

    Google Scholar 

  33. H. Saqib, S. Rahman, R. Susilo, B. Chen, N. Dai, Structural, vibrational, electrical, and magnetic properties of mixed spinel ferrites Mg1-xZnxFe2O4 nanoparticles prepared by co-precipitation. AIP Adv. 9, 055306 (2019)

    Google Scholar 

  34. P.Y. Reyes-Rodriguez, D.A. Cortes-Hernandez, J.C. Escobedo-Bocardo, J.M. Almanza-Robles, H.J. Sanchez-Fuentes, A. Jasso-Teran, L.E. De Leon-Prado, J. Mendez-Nonell, G.F. Hurtado-Lopez, Structural and magnetic properties of Mg-Zn ferrites (Mg1−xZnxFe2O4) prepared by sol-gel method. J. Magn. Magn. Mater. 427, 268–271 (2017)

    CAS  Google Scholar 

  35. M.A. Gabal, R.M. El-Shishtawy, Y.M. Al Angari, Structural and magnetic properties of nano-crystalline Ni–Zn ferrites synthesized using egg-white precursor. J. Magn. Magn. Mater. 324, 2258–2264 (2012)

    CAS  Google Scholar 

  36. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32, 751–767 (1976)

    Google Scholar 

  37. B.D. Cullity, Elements of X-ray Diffraction, 2nd edn. (Addison-Wesley, Reading, MA, 1978)

    Google Scholar 

  38. M.A. Gabal, Y.M. Al Angari, H.M. Zaki, Structural, magnetic and electrical characterization of Mg–Ni nano-crystalline ferrites prepared through egg-white precursor. J. Magn. Magn. Mater. 363, 6–12 (2014)

    CAS  Google Scholar 

  39. R.S. Yadav, I. Kuritka, J. Vilcakova, P. Urbanek, M. Machovsky, M. Masar, M. Holek, Structural, magnetic, optical, dielectric, electrical and modulus spectroscopic characteristics of ZnFe2O4 spinel ferrite nanoparticles synthesized via honey-mediated sol-gel combustion method. J. Phys. Chem. Solids 110, 87–99 (2017)

    CAS  Google Scholar 

  40. S.M. Patange, S.E. Shirsath, G.S. Jangam, K.S. Lohar, S.S. Jadhav, K.M. Jadhav, Rietveld structure refinement, cation distribution and magnetic properties of Al3+ substituted NiFe2O4 nanoparticles. J. Appl. Phys. 109, 053909 (2011)

    Google Scholar 

  41. R.D. Waldron, Infrared spectra of ferrites. Phys. Rev. 99, 1727–1735 (1955)

    CAS  Google Scholar 

  42. S.J. Kenye, J. Manjanna, G. Venkateswaran, R. Kameswaran, Corros. Sci. 48, 2780–2798 (2006)

    Google Scholar 

  43. A. Pradeep, P. Priyadharsini, G. Chandrasekaran, Sol–gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study. J. Magn. Magn. Mater. 320, 2774–2779 (2008)

    CAS  Google Scholar 

  44. J.L. Martin de Vidales, A. Lopez-Delgado, E. Vila, F.A. Lopez, The effect of the starting solution on the physico-chemical properties of zinc ferrite synthesized at low temperature. J. Alloys Compds. 287, 276–283 (1999)

    Google Scholar 

  45. P.A. Shaikh, R.C. Kambale, A.V. Rao, Y.D. Kolekar, Structural, magnetic and electrical properties of Co–Ni–Mn ferrites synthesized by co-precipitation method. J. Alloys Compd. 492, 590–596 (2010)

    CAS  Google Scholar 

  46. L. Neel, Aimanation a saturation des ferrites mixtes de nickel et de zinc. C. R. Acad. Sci. Paris 230, 375–377 (1950)

    Google Scholar 

  47. K. Nadeem, H. Krenn, T. Traussnig, R. Wurschum, D.V. Szabo, I. Letofsky-Papst, Spin-glass freezing of maghemite nanoparticles prepared by microwave plasma synthesis. J. Appl. Phys. 111, 113911 (2012)

    Google Scholar 

  48. Y. Yafet, C. Kittle, Antiferromagnetic arrangements in ferrites. Phys. Rev. 87, 290–294 (1952)

    CAS  Google Scholar 

  49. R. Topkaya, A. Baykal, A. Demir, Yafet–Kittel-type magnetic order in Zn-substituted cobalt ferrite nanoparticles with uniaxial anisotropy. J. Nanopart. Res. 15, 1359 (2013)

    Google Scholar 

  50. C.C. Chauhan, A.R. Kagdi, R.B. Jotania, A. Upadhyay, C.S. Sandhu, S.E. Shirsath, S.S. Meen, Structural, magnetic and dielectric properties of Co-Zr substituted M-type calcium hexagonal ferrite nanoparticles in the presence of α-Fe2O3 phase. Ceram. Int. 44, 17812–17823 (2018)

    CAS  Google Scholar 

  51. A.R. Kagdi, N.P. Solanki, F.E. Carvalho, S.S. Meena, P. Bhatt, R.C. Pullar, R.B. Jotania, Influence of Mg substitution on structural, magnetic and dielectric properties of X-type bariumezinc hexaferrites Ba2Zn2-xMgxFe28O46. J. Alloys Compd. 741, 377–391 (2018)

    CAS  Google Scholar 

  52. A.K. Nikumbh, R.A. Pawar, D.V. Nighot, G.S. Gugale, M.D. Sangale, M.B. Khanvilkar, A.V. Nagawade, Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method. J. Magn. Magn. Mater. 355, 201–209 (2014)

    CAS  Google Scholar 

  53. H.M. Zaki, S.H. Al-Heniti, T.A. Elmosalami, Structural, magnetic and dielectric studies of copper substituted nano-crystalline spinel magnesium zinc ferrite. J. Alloys Compd. 633, 104–114 (2015)

    CAS  Google Scholar 

  54. S.J. Haralkar, R.H. Kadam, S.S. More, S.E. Shirsath, M.L. Mane, S. Patil, D.R. Mane, Substitutional effect of Cr3+ ions on the properties of Mg–Zn ferrite nanoparticles. Phys. B 407, 4338–4346 (2012)

    CAS  Google Scholar 

  55. N. Sivakumar, A. Narayanasamy, J.-M. Greneche, R. Murugaraj, Y.S. Lee, Electrical and magnetic behaviour of nanostructured MgFe2O4 spinel ferrite. J. Alloys Compd. 504, 395–402 (2010)

    CAS  Google Scholar 

  56. D. Narsimulu, B.N. Rao, M. Venkateswarlu, E.S. Srinadhu, N. Satyanarayan, Electrical and electrochemical studies of nanocrystalline mesoporous MgFe2O4 as anode material for lithium battery applications. Ceram. Int. 42, 16789–16797 (2016)

    CAS  Google Scholar 

  57. D.K. Mahato, Ac conductivity analysis of nanocrystallite MgFe2O4 ferrite. Mater. Today: Proceedings 5, 9191–9195 (2018)

    CAS  Google Scholar 

  58. A.A. Yaremchenko, A.V. Kovalevsky, E.N. Naumovich, V.V. Kharton, J.R. Fradea, High-temperature electrical properties of magnesiowustite Mg1−xFexO and spinel Fe3−xyMgxCryO4 ceramics. Sol. State Ionics 192, 252–258 (2011)

    CAS  Google Scholar 

  59. S.M. Antao, I. Hassan, J.B. Parise, Cation ordering in magnesioferrite, MgFe2O4 to 982°C using in situ synchrotron X-ray powder diffraction. Am. Mineral. 90, 219–228 (2005)

    CAS  Google Scholar 

  60. H.S.C. O’Neill, H. Annersten, D. Virgo, The temperature dependence of the cation distribution in magnesioferrite (MgFe2O4) from powder XRD structural refinements and Mossbauer spectroscopy. Am. Mineral. 77, 725–740 (1992)

    Google Scholar 

  61. N.K. Thanh, T.H. Loan, N.P. Duong, L.N. Anh, D.T. Nguyet, N.H. Nam, S. Soontaranon, W. Klysubun, T.D. Hien, Cation distribution assisted tuning of magnetization in nanosized magnesium ferrite. Phys. Status Solidi A 215, 1700397 (2018)

    Google Scholar 

  62. M.A. Gabal, M.A. Ahmed, Structural, electrical and magnetic properties of copper-cadmium ferrites prepared from metal oxalates. J. Mater. Sci. 40, 387–398 (2005)

    CAS  Google Scholar 

  63. M.A. El Hiti, Dielectric behavior and ac electrical conductivity of Zn-substituted Ni-Mg ferrites. J. Magn. Magn. Mater. 164, I87–196 (1996)

    Google Scholar 

  64. S. Sen, R.N.P. Choudhary, P. Pramanik, Structural and electrical properties of Ca2+-modified PZT electroceramics. Phys. B 387, 56–62 (2007)

    CAS  Google Scholar 

  65. S. Khadhraoui, A. Triki, S. Hcini, S. Zemni, M. Oumezzine, Structural and impedance spectroscopy properties of Pr0.6Sr0.4Mn1−xTixO3±δ perovskites. J. Alloys Compd. 574, 290–298 (2013)

    CAS  Google Scholar 

  66. J.E. Bauerle, Study of solid electrolyte polarization by a complex admittance method. J. Phys. Chem. Solids 30, 2657–2670 (1969)

    CAS  Google Scholar 

  67. E. Oumezzine, S. Hcini, F.I.H. Rhouma, M. Oumezzine, Frequency and temperature dependence of conductance, impedance and electrical modulus studies of Ni0.6Cu0.4Fe2O4 spinel ferrite. J. Alloys Compd. 726, 187–194 (2017)

    CAS  Google Scholar 

  68. A. Selmi, S. Hcini, H. Rahmouni, A. Omri, M.L. Bouazizi, A. Dhahri, Synthesis, structural and complex impedance spectroscopy studies of Ni0.4Co0.4Mg0.2Fe2O4 spinel ferrite. Phase Transit. 90, 942–954 (2017)

    CAS  Google Scholar 

  69. J. Lario-Garcia, R. Pallas-Areny, Constant-phase element identification in conductivity sensors using a single square wave. Sens. Actuators A 132, 122–128 (2006)

    CAS  Google Scholar 

  70. B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musiani, Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim. Acta 55, 6218–6227 (2010)

    CAS  Google Scholar 

  71. P. Cordoba-Torres, T.J. Mesquita, O. Devos, B. Tribollet, V. Roche, R.P. Nogueira, On the intrinsic coupling between constant-phase element parameters α and Q in electrochemical impedance spectroscopy. Electrochim. Acta 72, 172–178 (2012)

    CAS  Google Scholar 

  72. Z. Stoynov, D. Vladikova, Differential Impedance Analysis (Marin Drinov Academic Publishing House, Sofia, 2005)

    Google Scholar 

  73. P. Zoltowski, On the electrical capacitance of interfaces exhibiting constant phase element behaviour. J. Electroanal. Chem. 443, 149–154 (1998)

    CAS  Google Scholar 

  74. S. Kallel, A. Nasri, N. Kallel, H. Rahmouni, O. Pena, K. Khirouni, M. Oumezzine, Complex impedance spectroscopy studies of (La0.70−xNdx) Sr0.30Mn0.70Cr0.30O3 (x≤ 030) perovskite compounds. Phys. B 406, 2172–2176 (2011)

    CAS  Google Scholar 

  75. M.A. El Hiti, Dielectric behavior in Mg-Zn ferrites. J. Magn. Magn. Mater. 192, 305–313 (1999)

    CAS  Google Scholar 

  76. K.M. Batoo, G. Kumar, Y. Yang, Y. Al-Douri, M. Singh, R.B. Jotania, A. Imran, Structural, morphological and electrical properties of Cd2+ doped MgFe2-xO4 ferrite nanoparticles. J. Alloys Compds. 726, 179–186 (2017)

    CAS  Google Scholar 

  77. J.C. Maxwell, Electricity and Magnetism (Oxford University Press, New York, 1954), p. 328

    Google Scholar 

  78. K.W. Wagner, The distribution of relaxation times in typical dielectrics. Ann. Phys. 40, 817–819 (1973)

    Google Scholar 

  79. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83, 121–124 (1951)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Gabal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabal, M.A., Al-Juaid, A.A. Structural and electromagnetic studies of Mg1-xZnxFe2O4 nanoparticles synthesized via a sucrose autocombustion route. J Mater Sci: Mater Electron 31, 10055–10071 (2020). https://doi.org/10.1007/s10854-020-03551-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03551-z

Navigation