Skip to main content
Log in

Effect of Ba(Mg1/3Nb2/3)O3 buffer layer on electrical properties of PZT-based films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pb[Nbx(Zr0.52Ti0.48)1−x]O3 (PNZT) thin films were deposited on Pt/Ti/SiO2/Si(100) by the sol–gel method using Ba(Mg1/3Nb2/3)O3 (BMN) buffer layer. The effects of Nb doping and BMN buffer layer on fatigue endurance and ferroelectric properties of PZT thin film were investigated. The optimum ferroelectric properties of PNZT film: Pr = 43.4 µC/cm2, Ec = 29.3 kV/cm and J = 2.73 × 10− 6 A/cm2 were obtained by doping 3 mol% Nb in PZT film. After 1010 cycles, the Pr of PZT film reduces by 50%. After 1012 cycles, the Pr of PNZT film only reduces by 20%. The reason for enhanced ferroelectric properties and fatigue endurance of PNZT thin film is that Nb doping effectively prevents the generation of oxygen vacancies. The Pr of the PNZT/BMN film remains 85% after 1010 cycles, and it remains stable even till to 1012 cycles. Moreover, the leakage current of PNZT/BMN film is 5.40 × 10− 7 A/cm² under 100 kV/cm electric field, which is about one order of magnitude lower than that of PNZT (2.73 × 10− 6 A/cm²). The effect of BMN on improving the fatigue endurance and ferroelectric properties of PNZT thin film could be ascribed to blocking of Pt diffusion at the PNZT–Pt interface. Moreover, PNZT/BMN film with excellent ferroelectric and fatigue endurance shows the promising application in FeRAM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.T. Ghoneim, M.A. Zidan, M.Y. Alnassar, A.N. Hanna, J. Kosel, K.N. Salama, M.M. Hussain, Adv. Electron. Mater. 1, 1500045 (2015)

    Article  Google Scholar 

  2. M.M. Zhang, Z. Jia, T.L. Ren, Solid State Electron. 53, 473–477 (2009)

    Article  CAS  Google Scholar 

  3. Z. Jia, T.L. Ren, Z.G. Zhang, T.Z. Liu, X.Y. Wen, H. Hu, T.Q. Shao, D. Xie, L.L. Liu, J. Phys. D 39, 2587–2591 (2006)

    Article  CAS  Google Scholar 

  4. C.A.P. Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott, J.F. Scott, Nature 374, 627–629 (1995)

    Article  Google Scholar 

  5. X. Du, I.W. Chen, J. Appl. Phys. 83, 7789–7780 (1998)

    Article  CAS  Google Scholar 

  6. C.D. Lupascu, R. Ute, Phys. Rev. Lett. 89, 187601 (2002)

    Article  Google Scholar 

  7. A. Dalakoti, A. Bandyopadhyay, S. Bose, J. Am. Ceram. Soc. 89, 1140–1143 (2006)

    Article  CAS  Google Scholar 

  8. Z. Zhang, S. Wang, W. Song, L. Lu, C. Shu, P. Wu, J. Phys. D 41, 135402 (2008)

    Article  Google Scholar 

  9. Q. Li, X. Wang, F. Wang, D. Chen, X. Xiao, H. Zou, Ceram. Int. 44, 7709–7715 (2018)

    Article  CAS  Google Scholar 

  10. T. Haccart, D. Remiens, E. Callan, Thin Solid Films 423, 235–242 (2003)

    Article  CAS  Google Scholar 

  11. H. Sun, Y. Zhang, X. Liu, S. Guo, Y. Liu, W. Chen, J. Sol-gel. Sci. Technol. 74, 378–386 (2015)

    Article  CAS  Google Scholar 

  12. S. Dutta, A.A. Jeyaseelan, S. Sruthi, Thin Solid Films 562, 190–194 (2014)

    Article  CAS  Google Scholar 

  13. V. Kayasu, M. Ozenbas, J. Eur. Ceram. Soc. 29, 1157–1163 (2019)

    Article  Google Scholar 

  14. Q. Li, X. Wang, F. Wang, J. Dou, W. Xu, H. Zou, J. Ceram. Sci. Technol. 8, 519–524 (2017)

    Google Scholar 

  15. J.J. Lee, C.L. Thio, S.B. Desu, J. Appl. Phys. 78, 5073–5078 (1995)

    Article  CAS  Google Scholar 

  16. F. Chen, R. Schafranek, A. Wachau, S. Zhukov, J. Glaum, T. Granzow, A. Klein, J. Appl. Phys. 108, 104106 (2010)

    Article  Google Scholar 

  17. Z. Wu, J. Zhou, W. Chen, J. Shen, L. Hu, J. Sol-gel. Sci. Technol. 74, 234–239 (2015)

    Article  CAS  Google Scholar 

  18. Y. Tang, B. Zhu, F. Wang, D. Sun, Z. Hu, X. Qin, W. Shi, Appl. Surf. Sci. 371, 160–163 (2016)

    Article  CAS  Google Scholar 

  19. S. Wang, H. Wang, J. Jian, J. Chen, J. Cheng, J. Alloy. Compd. 784, 231–236 (2019)

    Article  CAS  Google Scholar 

  20. L. Hao, J. Zhu, H. Zeng, Y. Zhang, W. Zhang, Y. Li, Thin Solid Films 520, 784–788 (2011)

    Article  CAS  Google Scholar 

  21. S.A.S. Rodrigues, J.P.B. Silva, A. Khodorov, J. Martín-Sánchez, M. Pereira, M.J.M. Gomes, Mat. Sci. Eng. B 178, 1224–1229 (2013)

    Article  CAS  Google Scholar 

  22. S. Nomura, Ferroelectrics 49, 61–70 (1983)

    Article  CAS  Google Scholar 

  23. L.P. Wen, L. Hu, J. Shen, Y.Y. Qi, J. Zhou, W. Chen, J. Am. Ceram. Soc. 98, 873–878 (2015)

    Article  CAS  Google Scholar 

  24. M. Yamane, J.B. Caldwell, D.T. Moore, J. Non-cryst. Solids. 85, 244–246 (1986)

    Article  CAS  Google Scholar 

  25. T. Zhou, Z. Zang, J. Wei, J. Zhang, J. Hao, F. Liang, X. Tang, L. Fang, M. Zhou, Nano. Energy. 50, 118–125 (2018)

    Article  CAS  Google Scholar 

  26. J. Wei, Z. Zang, Y. Zhang, M. Wang, J. Du, X. Tang, Opt. Lett. 42, 911–914 (2017)

    Article  CAS  Google Scholar 

  27. H. Huang, J. Zhang, L. Jiang, Z. Zang, J. Alloy. Compd. 718, 112–115 (2017)

    Article  CAS  Google Scholar 

  28. A. Shakeri, H. Abdizadeh, M.R. Golobostanfard, J. Mater. Sci. Mater. Electron. 27, 5654–5664 (2016)

    Article  CAS  Google Scholar 

  29. J, E. de la PérezCruz, P.M. Joanni, A.L. Vilarinho, Kholkin, J. Appl. Phys. 108, 114106 (2010)

    Article  Google Scholar 

  30. D. Cao, J. Xu, L. Fang, L.W. Dong, F. Zheng, M. Shen, Appl. Phys. Lett. 96, 192101 (2010)

    Article  Google Scholar 

  31. D. Cao, H. Zhang, L. Fang, W. Dong, F. Zheng, M. Shen, Appl. Phys. Lett. 97, 102104 (2010)

    Article  Google Scholar 

  32. M.C. Chun, S. Park, S. Park, G. Park, B.S. Kang, J. Alloy. Compd. 781, 1028–1032 (2019)

    Article  CAS  Google Scholar 

  33. L.J. Zhou, G. Rixecker, F. Aldinger, Key Eng. Mater. 336, 359–362 (2007)

    Article  Google Scholar 

  34. J.K. Yang, W.S. Kim, H.H. Park, Jpn. J. Appl. Phys. 39, 739–744 (2000)

    Article  Google Scholar 

  35. X.J. Lou, M. Zhang, S.A.T. Redfern, J.F. Scott, Phys. Rev. Lett. 97, 177601 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51572205), National Natural Science Foundation of China (No. 51802093), the Equipment Pre-Research Joint Fund of EDD and MOE (No. 6141A02022262), the Fundamental Research Funds for the Central Universities (WUT: 2018III019) and the Fundamental Research Funds for the Central Universities (2019-zy-007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Y., Zhou, J., Chen, W. et al. Effect of Ba(Mg1/3Nb2/3)O3 buffer layer on electrical properties of PZT-based films. J Mater Sci: Mater Electron 31, 9928–9936 (2020). https://doi.org/10.1007/s10854-020-03538-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03538-w

Navigation