Skip to main content
Log in

Highly dispersed polypyrrole nanotubes for improving the conductivity of electrically conductive adhesives

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

It is imperative to fabricate electrically conductive adhesives (ECAs) with excellent electrical performance and mechanical properties. In this article, a kind of polypyrrole nanotubes (PPy nanotubes) having a high aspect ratio and excellent dispersibility in various kinds of organic solvents were prepared and added to conventional Ag-containing adhesives. Stable suspension characteristics of PPy nanotubes in common solvents provided homogeneous dispersion of the PPy nanotubes in the composites. A small amount of PPy nanotubes can remarkably change the structures of the conductive networks of conventional ECAs and significantly improve the ECAs’ conductivity. By only adding 3 wt% PPy nanotubes, the resistivity (5.8 × 10−5 Ω ‧ cm) of the ECAs containing 55 wt% silver decreased to 1/1000 of the comparative ECAs without PPy nanotubes. This resistivity is almost five to one-tenth of the ECAs materials reported by now. Furthermore, the resulted ECAs showed excellent mechanical properties. The electrical resistivity of the new PPy nanotube-containing ECAs remained stable after they were rolled at a 6 mm bending radius for over 5000 cycles or pressed under 1200 kPa. An elastic printed circuit was fabricated using the above-described ECA-containing PPy nanotube, which demonstrates its potential application in the field of flexible electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Yang, C.P. Wong, M.M.F. Yuen, Printed electrically conductive composites: conductive filler designs and surface engineering. J. Mater. Chem. C 1(26), 4052–4069 (2013)

    CAS  Google Scholar 

  2. Z. Li, R. Zhang, K.S. Moon, Y. Liu, K. Hansen, T. Le, C.P. Wong, Highly conductive, flexible, polyurethane-based adhesives for flexible and printed electronics. Adv. Funct. Mater. 23(11), 1459–1465 (2013)

    CAS  Google Scholar 

  3. Y. Li, K.-S. Moon, C.P. Wong, Electronics without lead. Science 308(5727), 1419–1420 (2005)

    CAS  Google Scholar 

  4. Y. Li, C.P. Wong, Recent advances of conductive adhesives as a lead-free alternative in electronic packaging: Materials, processing, reliability and applications. Mater. Sci. Eng. R Rep. 51(1–3), 1–35 (2006)

    Google Scholar 

  5. B.M. Amoli, A. Hu, N.Y. Zhou, B. Zhao, Recent progresses on hybrid micro–nano filler systems for electrically conductive adhesives (ECAs) applications. J. Mater. Sci. Mater. Electron. 26(7), 4730–4745 (2015)

    Google Scholar 

  6. C. Li, Q. Li, X. Long, T. Li, J. Zhao, K. Zhang, E. Songfeng, J. Zhang, Z. Li, Y. Yao, In situ generation of photosensitive silver halide for improving the conductivity of electrically conductive adhesives. ACS Appl. Mater. Interfaces 9(34), 29047–29054 (2017)

    CAS  Google Scholar 

  7. J. Luo, Z. Cheng, C. Li, L. Wang, C. Yu, Y. Zhao, M. Chen, Q. Li, Y. Yao, Electrically conductive adhesives based on thermoplastic polyurethane filled with silver flakes and carbon nanotubes. Compos Sci Technol. 129, 191–197 (2016)

    CAS  Google Scholar 

  8. G. Cao, C. Hao, X. Gao, J. Lu, W. Xue, Y. Meng, C. Cheng, Y. Tian, Carbon nanotubes with carbon blacks as cofillers to improve conductivity and stability. ACS Omega 4(2), 4169–4175 (2019)

    CAS  Google Scholar 

  9. J. Wen, Y. Tian, C. Hang, Z. Zheng, H. Zhang, Z. Mei, X. Hu, Y. Tian, Fabrication of novel printable electrically conductive adhesives (ECAs) with excellent conductivity and stability enhanced by the addition of polyaniline nanoparticles. Nanomaterials 9(7), 960 (2019)

    Google Scholar 

  10. N.-W. Pu, Y.-Y. Peng, P.-C. Wang, C.-Y. Chen, J.-N. Shi, Y.-M. Liu, M.-D. Ger, C.-L. Chang, Application of nitrogen-doped graphene nanosheets in electrically conductive adhesives. Carbon 67, 449–456 (2014)

    CAS  Google Scholar 

  11. H. Ma, J. Zeng, S. Harrington, L. Ma, M. Ma, X. Guo, Y. Ma, Hydrothermal fabrication of silver nanowires-silver nanoparticles-graphene nanosheets composites in enhancing electrical conductive performance of electrically conductive adhesives. Nanomaterials 6(6), 119 (2016)

    Google Scholar 

  12. J.-Y. Wu, Y.-C. Lai, C.-L. Chang, W.-C. Hung, H.-M. Wu, Y.-C. Liao, C.-H. Huang, W.-R. Liu, Facile and green synthesis of graphene-based conductive adhesives via liquid exfoliation process. Nanomaterials 9(1), 38 (2019)

    Google Scholar 

  13. Y. Zhang, P. Zhu, G. Li, Z. Cui, C. Cui, K. Zhang, J. Gao, X. Chen, G. Zhang, R. Sun, PVP-mediated galvanic replacement synthesis of smart elliptic Cu–Ag nanoflakes for electrically conductive pastes. ACS Appl. Mater. Interfaces 11(8), 8382–8390 (2019)

    CAS  Google Scholar 

  14. J. Wen, Y. Tian, Z. Mei, W. Wu, Y. Tian, Synthesis of polypyrrole nanoparticles and their applications in electrically conductive adhesives for improving conductivity. RSC Adv. 7(84), 53219–53225 (2017)

    CAS  Google Scholar 

  15. Y.-H. Ji, Y. Liu, G.-W. Huang, X.-J. Shen, H.-M. Xiao, S.-Y. Fu, Ternary Ag/epoxy adhesive with excellent overall performance. ACS Appl. Mater. Interfaces 7(15), 8041–8052 (2015)

    CAS  Google Scholar 

  16. H. Jiang, K.-S. Moon, Y. Li, C.P. Wong, Surface functionalized silver nanoparticles for ultrahigh conductive polymer composites. Chem. Mater. 18(13), 2969–2973 (2006)

    CAS  Google Scholar 

  17. Y. Ge, X. Duan, M. Zhang, L. Mei, J. Hu, W. Hu, X. Duan, Direct room temperature welding and chemical protection of silver nanowire thin films for high performance transparent conductors. J. Am. Chem. Soc. 140(1), 193–199 (2017)

    Google Scholar 

  18. K.M. Koczkur, S. Mourdikoudis, L. Polavarapu, S.E. Skrabalak, Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans. 44(41), 17883–17905 (2015)

    CAS  Google Scholar 

  19. J. Zou, S.I. Khondaker, Q. Huo, L. Zhai, A general strategy to disperse and functionalize carbon nanotubes using conjugated block copolymers. Adv. Funct. Mater. 19(3), 479–483 (2009)

    CAS  Google Scholar 

  20. K. Yang, M. Gu, Y. Guo, X. Pan, G. Mu, Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites. Carbon 47(7), 1723–1737 (2009)

    CAS  Google Scholar 

  21. J. Stejskal, Strategies towards the control of one-dimensional polypyrrole nanomorphology and conductivity. Polym. Int. 67(11), 1461–1469 (2018)

    CAS  Google Scholar 

  22. D. Zhang, S. Qiu, W. Huang, D. Yang, H. Wang, Z. Fang, Mechanically strong and electrically stable polypyrrole paper using high molecular weight sulfonated alkaline lignin as a dispersant and dopant. J. Colloid Interface Sci. 556, 47–53 (2019)

    CAS  Google Scholar 

  23. J. Cai, W. Xu, Y. Liu, Z. Zhu, G. Liu, W. Ding, G. Wang, H. Wang, Y. Luo, Robust construction of flexible bacterial cellulose@Ni(OH)2 paper: toward high capacitance and sensitive H2O2 detection. Eng. Sci. 5, 21–29 (2019)

    Google Scholar 

  24. J. Chen, Q. Yu, X. Cui, M. Dong, J. Zhang, C. Wang, J. Fan, Y. Zhu, Z. Guo, An overview of stretchable strain sensors from conductive polymer nanocomposites. J. Mater. Chem. C 7(38), 11710–11730 (2019)

    CAS  Google Scholar 

  25. S. Li, A. Jasim, W. Zhao, L. Fu, M. Ullah, Z. Shi, G. Yang, Fabrication of pH-electroactive bacterial cellulose/polyaniline hydrogel for the development of a controlled drug release system. ES Mater. Manuf. 1, 41–49 (2018)

    Google Scholar 

  26. H. Huang, L. Han, Y. Wang, Z. Yang, F. Zhu, M. Xu, Tunable thermal-response shape memory bio-polymer hydrogels as body motion sensors. Eng. Sci. 9, 60–67 (2020)

    Google Scholar 

  27. J. Wen, Y. Tian, C. Hao, S. Wang, Z. Mei, W. Wu, J. Lu, Z. Zheng, Y. Tian, Fabrication of high performance printed flexible conductors by doping of polyaniline nanomaterials into silver paste. J. Mater. Chem. C 7(5), 1188–1197 (2019)

    CAS  Google Scholar 

  28. P. Si, J. Trinidad, L. Chen, B. Lee, A. Chen, J. Persic, R. Lyn, Z. Leonenko, B. Zhao, PEDOT: PSS nano-gels for highly electrically conductive silver/epoxy composite adhesives. J. Mater. Sci. 29(3), 1837–1846 (2018)

    CAS  Google Scholar 

  29. I.M. Minisy, P. Bober, U. Acharya, M. Trchová, J. Hromádková, J. Pfleger, J. Stejskal, Cationic dyes as morphology-guiding agents for one-dimensional polypyrrole with improved conductivity. Polymer 174, 11–17 (2019)

    CAS  Google Scholar 

  30. X. Wu, J. Tang, Y. Duan, A. Yu, R.M. Berry, K.C. Tam, Conductive cellulose nanocrystals with high cycling stability for supercapacitor applications. J. Mater. Chem. A 2(45), 19268–19274 (2014)

    CAS  Google Scholar 

  31. S. Bhadra, N.K. Singha, D. Khastgir, Effect of aromatic substitution in aniline on the properties of polyaniline. Eur. Polym. J. 44(6), 1763–1770 (2008)

    CAS  Google Scholar 

  32. I. Sapurina, Y. Li, E. Alekseeva, P. Bober, M. Trchova, Z. Moravkova, J. Stejskal, Polypyrrole nanotubes: the tuning of morphology and conductivity. Polymer 113, 247–258 (2017)

    CAS  Google Scholar 

  33. D.D. Ateh, H.A. Navsaria, P. Vadgama, Polypyrrole-based conducting polymers and interactions with biological tissues. J. Royal Soc. Interface 3(11), 741–752 (2006)

    CAS  Google Scholar 

  34. J. Stejskal, M. Trchová, Conducting polypyrrole nanotubes: a review. Chem. Pap. 72(7), 1563–1595 (2018)

    CAS  Google Scholar 

  35. D.P. Dubal, N.R. Chodankar, Z. Caban-Huertas, F. Wolfart, M. Vidotti, R. Holze, C.D. Lokhande, P. Gomez-Romero, Synthetic approach from polypyrrole nanotubes to nitrogen doped pyrolyzed carbon nanotubes for asymmetric supercapacitors. J. Power Sources 308, 158–165 (2016)

    CAS  Google Scholar 

  36. A. Nautiyal, M. Qiao, T. Ren, T. Huang, X. Zhang, J. Cook, M.J. Bozack, R. Farag, High-performance engineered conducting polymer film towards antimicrobial/anticorrosion applications. Eng. Sci. 4, 70–78 (2018)

    Google Scholar 

  37. N. Zhang, J. Li, X. Men, Z. Li, H. Zhao, Cleaning synthesis of core–shell structured Ni@PPy composite as excellent lightweight electromagnetic wave absorber. J. Mater. Sci. Mater. Electron. 31(2), 1483–1490 (2020)

    CAS  Google Scholar 

  38. Y. Li, P. Bober, M. Trchová, J. Stejskal, Polypyrrole prepared in the presence of methyl orange and ethyl orange: nanotubes versus globules in conductivity enhancement. J. Mater. Chem. C 5(17), 4236–4245 (2017)

    CAS  Google Scholar 

  39. N.V. Blinova, J. Stejskal, M. Trchová, J. Prokeš, M. Omastová, Polyaniline and polypyrrole: a comparative study of the preparation. Eur. Polym. J. 43(6), 2331–2341 (2007)

    CAS  Google Scholar 

  40. S. Bhattacharjee, DLS and zeta potential–what they are and what they are not? J. Control. Release 235, 337–351 (2016)

    CAS  Google Scholar 

  41. B.M. Amoli, J. Trinidad, G. Rivers, S. Sy, P. Russo, A. Yu, N.Y. Zhou, B. Zhao, SDS-stabilized graphene nanosheets for highly electrically conductive adhesives. Carbon 91, 188–199 (2015)

    Google Scholar 

  42. Z.X. Zhang, X.Y. Chen, F. Xiao, The sintering behavior of electrically conductive adhesives filled with surface modified silver nanowires. J. Adhes. Sci. Technol. 25(13), 1465–1480 (2011)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (21574061, 21774054), the Shenzhen fundamental research programs (JCYJ20170412152922553), and the start-up fund of SUSTech (Y01256114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqing Tian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5645 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, G., Wang, L. & Tian, Y. Highly dispersed polypyrrole nanotubes for improving the conductivity of electrically conductive adhesives. J Mater Sci: Mater Electron 31, 9675–9684 (2020). https://doi.org/10.1007/s10854-020-03513-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03513-5

Navigation