Skip to main content
Log in

RETRACTED ARTICLE: Enhanced luminescence of Mo3+-doped β-NaREF4 nanowires prepared via coprecipitation–solvothermal ion-exchange method and their application in upconversion polyurethane composite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

This article was retracted on 05 October 2021

This article has been updated

Abstract

A variety of 0–20 mol% of molybdenum ions (Mo3+)-doped sodium rare-earth (RE) fluoride upconversion nanowires (UCNW) were prepared by Coprecipitate–Solvothermal Ion-Exchange (CSIE) method. In this study, the Mo3+-doped rare-earth hydroxide [REMo(OH)3] precursors were synthesized by the coprecipitation–solvothermal method. Following, the hexagonal phase of the Mo3+-doped sodium rare-earth fluoride (β-NaGdF4: Yb3+/Tm3+/Mo3+, abbreviated as NaREMoF4) nanowires were successfully prepared by ion-exchange reaction, and checked by XRD data analysis. As shown in the EDS results, Mo3+ was uniformly distributed in the β-NaREMoF4. The controlled diameter (20–50 nm) and aspect ratio (20–500) values of β-NaGdF4: Yb3+/Tm3+/Mo3+ nanowires strongly depend on the amount of Mo doping according to TEM images. The upconversion luminescence intensity (UC) of 10 mol% Mo3+-doped β-NaREMoF4 nanowires was increased by one order of magnitude under the 980 nm near-infrared (NIR) excitation in regard to the undoped sample. One-dimensional (1D) upconversion nanowires (UCNW) with 10 mol% Mo3+ doping gives the upconversion polyurethane (UCPU) excellent luminescent performance and about 99% of enhanced tensile strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. J.C. Boyer, F.C. van Veggel, Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles. Nanoscale 2(8), 1417–1419 (2010)

    Article  CAS  Google Scholar 

  2. S. Fan, G. Gao, S. Sun, S. Fan, H. Sun, L. Hu, Absolute up-conversion quantum efficiency reaching 4% in β-NaYF4:Yb3+, Er3+ micro-cylinders achieved by Li+/Na+ ion-exchange. Journal of Materials Chemistry C 6(20), 5453–5461 (2018)

    Article  CAS  Google Scholar 

  3. Y. Zhang, B. Chen, S. Xu, X. Li, J. Zhang, J. Sun, H. Zheng, L. Tong, G. Sui, H. Zhong, H. Xia, R. Hua, Dually functioned core-shell NaYF4:Er3+/Yb3+@NaYF4:Tm3+/Yb3+ nanoparticles as nano-calorifiers and nano-thermometers for advanced photothermal therapy. Sci Rep 7(1), 11849 (2017)

    Article  CAS  Google Scholar 

  4. J. Yang, L. Song, X. Wang, J. Dong, S. Gan, L. Zou, Facile synthesis and color-tunable properties of monodisperse beta-NaYF4:Ln3+ (Ln = Eu, Tb, Tm, Sm, Ho) microtubes. Dalton Trans 47(4), 1294–1302 (2018)

    Article  CAS  Google Scholar 

  5. X. Wang, T. Xu, Y. Bu, X. Yan, Giant enhancement of upconversion emission in NaYF4:Er3+@NaYF4:Yb3+ active-core/active-shell nanoparticles. RSC Advances 6(27), 22845–22851 (2016)

    Article  CAS  Google Scholar 

  6. M.S. Meijer, P.A. Rojas-Gutierrez, D. Busko, I.A. Howard, F. Frenzel, C. Wurth, U. Resch-Genger, B.S. Richards, A. Turshatov, J.A. Capobianco, S. Bonnet, Absolute upconversion quantum yields of blue-emitting LiYF4:Yb3+, Tm3+ upconverting nanoparticles. Phys Chem Chem Phys 20(35), 22556–22562 (2018)

    Article  CAS  Google Scholar 

  7. N. Niu, P. Yang, Y. Liu, C. Li, D. Wang, S. Gai, F. He, Controllable synthesis and up-conversion properties of tetragonal BaYF5:Yb/Ln (Ln=Er, Tm, and Ho) nanocrystals. J Colloid Interface Sci 362(2), 389–396 (2011)

    Article  CAS  Google Scholar 

  8. F. Auzel, Up-conversion in Rare-Earth-doped systems: past, present and future, in Xi Feofilov Symposium on Spectroscopy of Crystals Activated by Rare-Earth and Transition Metal Ions, vol. 4766, ed. by A.A. Kaplyanskii, B.Z. Malkin, S.I. Nikitin (Spie-Int Soc Optical Engineering, Bellingham, 2002), pp. 179–190.

  9. H. Dong, L.D. Sun, C.H. Yan, Energy transfer in lanthanide upconversion studies for extended optical applications. Chem Soc Rev 44(6), 1608–1634 (2015)

    Article  CAS  Google Scholar 

  10. X. Liu, J. Qiu, Recent advances in energy transfer in bulk and nanoscale luminescent materials: from spectroscopy to applications. Chem Soc Rev 44(23), 8714–8746 (2015)

    Article  CAS  Google Scholar 

  11. B. Zhou, B. Shi, D. Jin, X. Liu, Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 10(11), 924–936 (2015)

    Article  CAS  Google Scholar 

  12. G.-B. Shan, G.P. Demopoulos, Near-infrared sunlight harvesting in dye-sensitized solar cells via the insertion of an upconverter-TiO2 nanocomposite layer. Adv. Mater. 22(39), 4373–4377 (2010)

    Article  CAS  Google Scholar 

  13. T. Li, W. Zhou, Q. Song, W. Fang, NaYF4:Yb3+–Er3+ nanocrystals / P(NIPAM-co-RhBHA) core–shell nanogels: preparation, structure, multi stimuli-responsive behaviors and application as detector for Hg2+ ions. J. Photochem. Photobiol., A 302, 51–58 (2015)

    Article  CAS  Google Scholar 

  14. C.-J. Carling, J.-C. Boyer, N.R. Branda, Remote-control photoswitching using NIR light. J. Am. Chem. Soc. 131(31), 10838–10839 (2009)

    Article  CAS  Google Scholar 

  15. M. Liu, Z. Shi, X. Wang, Y. Zhang, X. Mo, R. Jiang, Z. Liu, L. Fan, C.G. Ma, F. Shi, Simultaneous enhancement of red upconversion luminescence and CT contrast of NaGdF4:Yb, Er nanoparticles via Lu3+ doping. Nanoscale 10(43), 20279–20288 (2018)

    Article  CAS  Google Scholar 

  16. J. Xu, D. Yang, R. Lv, B. Liu, S. Gai, F. He, C. Li, P. Yang, Design, fabrication, luminescence and biomedical applications of UCNPs@mSiO2–ZnPc–CDs–P(NIPAm-MAA) nanocomposites. Journal of Materials Chemistry B 4(35), 5883–5894 (2016)

    Article  CAS  Google Scholar 

  17. Y. Liang, F. Liu, Y. Chen, X. Wang, K. Sun, Z. Pan, Extending the applications for lanthanide ions: efficient emitters in short-wave infrared persistent luminescence. Journal of Materials Chemistry C 5(26), 6488–6492 (2017)

    Article  CAS  Google Scholar 

  18. Y. Liu, D. Tu, H. Zhu, X. Chen, Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chem Soc Rev 42(16), 6924–6958 (2013)

    Article  CAS  Google Scholar 

  19. F. Wang, X. Liu, Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 38(4), 976–989 (2009)

    Article  CAS  Google Scholar 

  20. J.C. Boyer, F. Vetrone, L.A. Cuccia, J.A. Capobianco, Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. J. Am. Chem. Soc. 128(23), 7444–7445 (2006)

    Article  CAS  Google Scholar 

  21. N. Bogdan, F. Vetrone, G.A. Ozin, J.A. Capobianco, Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett. 11(2), 835–840 (2011)

    Article  CAS  Google Scholar 

  22. C. Li, J. Lin, Rare-earth fluoride nano-/microcrystals: synthesis, surface modification and application. J. Mater. Chem. 20(33), 6831–6847 (2010)

    Article  CAS  Google Scholar 

  23. W. Wei, J. Jiao, Y. Liu, L. Liu, B. Lv, Z. Li, S. Gai, J. Tang, Effect of the Fe3+ concentration on the upconversion luminescence in NaGdF4:Yb3+, Er3+ nanorods prepared by a hydrothermal method. J. Mater. Sci. 54(20), 13200–13207 (2019)

    Article  CAS  Google Scholar 

  24. S. Xu, Y. Yu, Y. Gao, Y. Zhang, X. Li, J. Zhang, Y. Wang, B. Chen, Mesoporous silica coating NaYF4:Yb, Er@NaYF4 upconversion nanoparticles loaded with ruthenium(II) complex nanoparticles: Fluorometric sensing and cellular imaging of temperature by upconversion and of oxygen by downconversion. Mikrochim Acta 185(10), 454 (2018)

    Article  CAS  Google Scholar 

  25. J.-W. Shen, J. Lu, J. Tu, X. Ouyang, H. Li, Enhanced 808 nm driven Ce3+ doped red-emitting upconversion nanocrystals by intercalated nanostructures. Journal of Materials Chemistry C 4(22), 4905–4911 (2016)

    Article  CAS  Google Scholar 

  26. J. Zhao, C. Guo, T. Li, Enhanced near-infrared emission by co-doping Ce3+ in Ba2Y(BO3)2Cl:Tb3+, Yb3+ phosphor. RSC Advances 5(36), 28299–28304 (2015)

    Article  CAS  Google Scholar 

  27. W. Gao, H. Zheng, Q. Han, E. He, F. Gao, R. Wang, Enhanced red upconversion luminescence by co-doping Ce3+ in β-NaY(Gd0.4)F4:Yb3+/Ho3+ nanocrystals. J. Mater. Chem. C 2(27), 5327–5334 (2014)

    Article  CAS  Google Scholar 

  28. X. Fan, C. Li, Z. Wang, Y. Wei, C. Duan, C. Han, H. Xu, Enhancing reverse intersystem crossing via secondary acceptors: toward sky-blue fluorescent diodes with 10-fold improved external quantum efficiency. ACS Appl Mater Interfaces 11(4), 4185–4192 (2019)

    Article  CAS  Google Scholar 

  29. X. Huang, S. Han, W. Huang, X. Liu, Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem Soc Rev 42(1), 173–201 (2013)

    Article  CAS  Google Scholar 

  30. D. Yin, C. Wang, J. Ouyang, K. Song, B. Liu, X. Cao, L. Zhang, Y. Han, X. Long, M. Wu, Enhancing upconversion luminescence of NaYF4:Yb/Er nanocrystals by Mo3+ doping and their application in bioimaging. Dalton Trans 43(31), 12037–12043 (2014)

    Article  CAS  Google Scholar 

  31. S. Gai, C. Li, P. Yang, J. Lin, Recent progress in rare-earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chem Rev 114(4), 2343–2389 (2014)

    Article  CAS  Google Scholar 

  32. W. Kim, J.K. Ng, M.E. Kunitake, B.R. Conklin, P. Yang, Interfacing silicon nanowires with mammalian cells. J. Am. Chem. Soc. 129(23), 7228–7229 (2007)

    Article  CAS  Google Scholar 

  33. J. Hahm, C.M. Lieber, Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors. Nano Lett. 4(1), 51–54 (2004)

    Article  CAS  Google Scholar 

  34. L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas, J.L. West, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA. 100, 13549–13554 (2003)

    Article  CAS  Google Scholar 

  35. Y.N. Xia, P.D. Yang, Y.G. Sun, Y.Y. Wu, M. Brian, G. Byron, Y.D. Yin, K. Franklin, H.Q. Yan, One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15(5), 353–389 (2003)

    Article  CAS  Google Scholar 

  36. C.C. Chen, C.C. Yeh, Large-scale catalytic synthesis of crystalline gallium nitride nanowires. Adv. Mater. 12, 738–741 (2000)

    Article  CAS  Google Scholar 

  37. M. Yazawa, M.H. Koguchi, M. Muto, M. Ozawa, H. Hiruma, Effect of one monolayer of surface gold atoms on the epitaxial growth of lnas nanowhiskers. Appl. Phys. Lett. 61, 2051–2053 (1992)

    Article  CAS  Google Scholar 

  38. A. Dorn, P.M. Allen, M.G. Bawendi, Electrically controlling and monitoring inp nanowire growth from solution. ACS Nano 3(10), 3260–3265 (2009)

    Article  CAS  Google Scholar 

  39. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nat. Mater. 4(6), 455–459 (2005)

    Article  CAS  Google Scholar 

  40. R. Yan, D. Gargas, P. Yang, Nanowire photonics. Nat. Photonics 3(10), 569–576 (2009)

    Article  CAS  Google Scholar 

  41. D. Ma, D. Yang, J. Jiang, P. Cai, S. Huang, One-dimensional hexagonal-phase NaYF4: Controlled synthesis, self-assembly, and morphology-dependent up-conversion luminescence properties. CrystEngComm 12(5), 1650–1658 (2010)

    Article  CAS  Google Scholar 

  42. F. Zhang, D. Zhao, Synthesis of uniform rare-earth fluoride (NaMF4) nanotubes by in situ ion exchange from their hydroxide [M(OH)3] parents. ACS Nano 3(1), 159–164 (2009)

    Article  CAS  Google Scholar 

  43. D. Ma, D. Yang, J. Jiang, P. Cai, S. Huang, One-dimensional hexagonal-phase NaYF4: Controlled synthesis, selfassembly, and morphology-dependent up-conversion luminescence properties. CrystEngComm 12(9), 1650–1658 (2010)

    Article  CAS  Google Scholar 

  44. T. Pauporté, F. Pellé, B. Viana, P. Aschehoug, Luminescence of nanostructured Eu3+/ZnO mixed films prepared by electrodeposition. J. Phys. Chem. C 111(42), 15427–15432 (2007)

    Article  CAS  Google Scholar 

  45. O. Lupan, T. Pauporté, B. Viana, Low-temperature growth of ZnO nanowire arrays on p-silicon (111) for visible-light-emitting diode fabrication. J. Phys. Chem. C 114(35), 14781–14785 (2010)

    Article  CAS  Google Scholar 

  46. P.V. Radovanovic, K.G. Stamplecoskie, B.G. Pautler, Dopant ion concentration dependence of growth and faceting of manganese-doped gan nanowires. J. Am. Chem. Soc. 129(36), 10980–10981 (2007)

    Article  CAS  Google Scholar 

  47. Z. Gerelkhuu, B.T. Huy, J.W. Chung, T.-L. Phan, E. Conte, Y.-I. Lee, Influence of Cr3+ on upconversion luminescent and magnetic properties of NaLu0.86xGd0.12F4:Crx3+/Er0.023+ (0≤x≤024) material. J. Lumin. 187, 40–45 (2017)

    Article  CAS  Google Scholar 

  48. B. Viana, L.A. Momoda, B. Dunn, Infrared to visible luminescence up-conversion by Yb3+-RE3+ energy-transfer in beta''-alumina (RE3+=Er3+, Ho3+, Tm3+). J. Phys. IV 1(C7), 411–414 (1991)

    Google Scholar 

  49. M. Pollnau, D.R. Gamelin, S.R. Lüthi, H.U. Güdel, M.P. Hehlen, Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys.Rev. B 61(5), 3337–3346 (2000)

    Article  CAS  Google Scholar 

  50. C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, H. Zhang, Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles. Nanoscale 5(17), 8084–8089 (2013)

    Article  CAS  Google Scholar 

  51. J. Zhang, J. Chen, M. Yao, Z. Jiang, Y. Ma, Hydrolysis-resistant polyurethane elastomers synthesized from hydrophobic bio-based polyfarnesene diol. J. Appl. Polym. Sci. 136(25), 47673 (2019)

    Article  CAS  Google Scholar 

  52. M. Zieleniewska, M. Auguścik, A. Prociak, P. Rojek, J. Ryszkowska, Polyurethane-urea substrates from rapeseed oil-based polyol for bone tissue cultures intended for application in tissue engineering. Polym. Degrad. Stab. 108, 241–249 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Contract 51601133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinping Xiong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail:https://doi.org/10.1007/s10854-021-07111-x

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 358 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, G., Wang, K., Xiong, Q. et al. RETRACTED ARTICLE: Enhanced luminescence of Mo3+-doped β-NaREF4 nanowires prepared via coprecipitation–solvothermal ion-exchange method and their application in upconversion polyurethane composite. J Mater Sci: Mater Electron 31, 8359–8369 (2020). https://doi.org/10.1007/s10854-020-03371-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03371-1

Navigation